Do you want to publish a course? Click here

Hierarchical Bayesian Mixture Models for Time Series Using Context Trees as State Space Partitions

91   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A general Bayesian framework is introduced for mixture modelling and inference with real-valued time series. At the top level, the state space is partitioned via the choice of a discrete context tree, so that the resulting partition depends on the values of some of the most recent samples. At the bottom level, a different model is associated with each region of the partition. This defines a very rich and flexible class of mixture models, for which we provide algorithms that allow for efficient, exact Bayesian inference. In particular, we show that the maximum a posteriori probability (MAP) model (including the relevant MAP context tree partition) can be precisely identified, along with its exact posterior probability. The utility of this general framework is illustrated in detail when a different autoregressive (AR) model is used in each state-space region, resulting in a mixture-of-AR model class. The performance of the associated algorithmic tools is demonstrated in the problems of model selection and forecasting on both simulated and real-world data, where they are found to provide results as good or better than state-of-the-art methods.



rate research

Read More

We develop a new Bayesian modelling framework for the class of higher-order, variable-memory Markov chains, and introduce an associated collection of methodological tools for exact inference with discrete time series. We show that a version of the context tree weighting algorithm can compute the prior predictive likelihood exactly (averaged over both models and parameters), and two related algorithms are introduced, which identify the a posteriori most likely models and compute their exact posterior probabilities. All three algorithms are deterministic and have linear-time complexity. A family of variable-dimension Markov chain Monte Carlo samplers is also provided, facilitating further exploration of the posterior. The performance of the proposed methods in model selection, Markov order estimation and prediction is illustrated through simulation experiments and real-world applications with data from finance, genetics, neuroscience, and animal communication. The associated algorithms are implemented in the R package BCT.
We develop a Bayesian sum-of-trees model where each tree is constrained by a regularization prior to be a weak learner, and fitting and inference are accomplished via an iterative Bayesian backfitting MCMC algorithm that generates samples from a posterior. Effectively, BART is a nonparametric Bayesian regression approach which uses dimensionally adaptive random basis elements. Motivated by ensemble methods in general, and boosting algorithms in particular, BART is defined by a statistical model: a prior and a likelihood. This approach enables full posterior inference including point and interval estimates of the unknown regression function as well as the marginal effects of potential predictors. By keeping track of predictor inclusion frequencies, BART can also be used for model-free variable selection. BARTs many features are illustrated with a bake-off against competing methods on 42 different data sets, with a simulation experiment and on a drug discovery classification problem.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between different number of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split-merge proposals to expedite the MCMC algorithm. We employ proposed algorithms to the simulated data as well as a real data example, and the results demonstrate the desired performance of the new sampler.
Many panel studies collect refreshment samples---new, randomly sampled respondents who complete the questionnaire at the same time as a subsequent wave of the panel. With appropriate modeling, these samples can be leveraged to correct inferences for biases caused by non-ignorable attrition. We present such a model when the panel includes many categorical survey variables. The model relies on a Bayesian latent pattern mixture model, in which an indicator for attrition and the survey variables are modeled jointly via a latent class model. We allow the multinomial probabilities within classes to depend on the attrition indicator, which offers additional flexibility over standard applications of latent class models. We present results of simulation studies that illustrate the benefits of this flexibility. We apply the model to correct attrition bias in an analysis of data from the 2007-2008 Associated Press/Yahoo News election panel study.
Many time-to-event studies are complicated by the presence of competing risks. Such data are often analyzed using Cox models for the cause specific hazard function or Fine-Gray models for the subdistribution hazard. In practice regression relationships in competing risks data with either strategy are often complex and may include nonlinear functions of covariates, interactions, high-dimensional parameter spaces and nonproportional cause specific or subdistribution hazards. Model misspecification can lead to poor predictive performance. To address these issues, we propose a novel approach to flexible prediction modeling of competing risks data using Bayesian Additive Regression Trees (BART). We study the simulation performance in two-sample scenarios as well as a complex regression setting, and benchmark its performance against standard regression techniques as well as random survival forests. We illustrate the use of the proposed method on a recently published study of patients undergoing hematopoietic stem cell transplantation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا