Do you want to publish a course? Click here

Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video Analytics Pipelines

526   0   0.0 ( 0 )
 Added by Francisco Romero
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The proliferation of camera-enabled devices and large video repositories has led to a diverse set of video analytics applications. These applications rely on video pipelines, represented as DAGs of operations, to transform videos, process extracted metadata, and answer questions like, Is this intersection congested? The latency and resource efficiency of pipelines can be optimized using configurable knobs for each operation (e.g., sampling rate, batch size, or type of hardware used). However, determining efficient configurations is challenging because (a) the configuration search space is exponentially large, and (b) the optimal configuration depends on users desired latency and cost targets, (c) input video contents may exercise different paths in the DAG and produce a variable amount intermediate results. Existing video analytics and processing systems leave it to the users to manually configure operations and select hardware resources. We present Llama: a heterogeneous and serverless framework for auto-tuning video pipelines. Given an end-to-end latency target, Llama optimizes for cost efficiency by (a) calculating a latency target for each operation invocation, and (b) dynamically running a cost-based optimizer to assign configurations across heterogeneous hardware that best meet the calculated per-invocation latency target. This makes the problem of auto-tuning large video pipelines tractable and allows us to handle input-dependent behavior, conditional branches in the DAG, and execution variability. We describe the algorithms in Llama and evaluate it on a cloud platform using serverless CPU and GPU resources. We show that compared to state-of-the-art cluster and serverless video analytics and processing systems, Llama achieves 7.8x lower latency and 16x cost reduction on average.



rate research

Read More

DNN-based video analytics have empowered many new applications (e.g., automated retail). Meanwhile, the proliferation of fog devices provides developers with more design options to improve performance and save cost. To the best of our knowledge, this paper presents the first serverless system that takes full advantage of the client-fog-cloud synergy to better serve the DNN-based video analytics. Specifically, the system aims to achieve two goals: 1) Provide the optimal analytics results under the constraints of lower bandwidth usage and shorter round-trip time (RTT) by judiciously managing the computational and bandwidth resources deployed in the client, fog, and cloud environment. 2) Free developers from tedious administration and operation tasks, including DNN deployment, cloud and fogs resource management. To this end, we implement a holistic cloud-fog system referred to as VPaaS (Video-Platform-as-a-Service). VPaaS adopts serverless computing to enable developers to build a video analytics pipeline by simply programming a set of functions (e.g., model inference), which are then orchestrated to process videos through carefully designed modules. To save bandwidth and reduce RTT, VPaaS provides a new video streaming protocol that only sends low-quality video to the cloud. The state-of-the-art (SOTA) DNNs deployed at the cloud can identify regions of video frames that need further processing at the fog ends. At the fog ends, misidentified labels in these regions can be corrected using a light-weight DNN model. To address the data drift issues, we incorporate limited human feedback into the system to verify the results and adopt incremental learning to improve our system continuously. The evaluation demonstrates that VPaaS is superior to several SOTA systems: it maintains high accuracy while reducing bandwidth usage by up to 21%, RTT by up to 62.5%, and cloud monetary cost by up to 50%.
Serverless computing has emerged as a promising alternative to infrastructure- (IaaS) and platform-as-a-service (PaaS)cloud platforms for applications with ample parallelism and intermittent activity. Serverless promises greater resource elasticity, significant cost savings, and simplified application deployment. All major cloud providers, including Amazon, Google, and Microsoft, have introduced serverless to their public cloud offerings. For serverless to reach its potential, there is a pressing need for programming frameworks that abstract the deployment complexity away from the user. This includes simplifying the process of writing applications for serverless environments, automating task and data partitioning, and handling scheduling and fault tolerance. We present Ripple, a programming framework designed to specifically take applications written for single-machine execution and allow them to take advantage of the task parallelism of serverless. Ripple exposes a simple interface that users can leverage to express the high-level dataflow of a wide spectrum of applications, including machine learning (ML) analytics, genomics, and proteomics. Ripple also automates resource provisioning, meeting user-defined QoS targets, and handles fault tolerance by eagerly detecting straggler tasks. We port Ripple over AWS Lambda and show that, across a set of diverse applications, it provides an expressive and generalizable programming framework that simplifies running data-parallel applications on serverless, and can improve performance by up to 80x compared to IaaS/PaaS clouds for similar costs.
Serverless computing has rapidly grown following the launch of Amazons Lambda platform. Function-as-a-Service (FaaS) a key enabler of serverless computing allows an application to be decomposed into simple, standalone functions that are executed on a FaaS platform. The FaaS platform is responsible for deploying and facilitating resources to the functions. Several of todays cloud applications spread over heterogeneous connected computing resources and are highly dynamic in their structure and resource requirements. However, FaaS platforms are limited to homogeneous clusters and homogeneous functions and do not account for the data access behavior of functions before scheduling. We introduce an extension of FaaS to heterogeneous clusters and to support heterogeneous functions through a network of distributed heterogeneous target platforms called Function Delivery Network (FDN). A target platform is a combination of a cluster of homogeneous nodes and a FaaS platform on top of it. FDN provides Function-Delivery-as-a-Service (FDaaS), delivering the function to the right target platform. We showcase the opportunities such as varied target platforms characteristics, possibility of collaborative execution between multiple target platforms, and localization of data that the FDN offers in fulfilling two objectives: Service Level Objective (SLO) requirements and energy efficiency when scheduling functions by evaluating over five distributed target platforms using the FDNInspector, a tool developed by us for benchmarking distributed target platforms. Scheduling functions on an edge target platform in our evaluation reduced the overall energy consumption by 17x without violating the SLO requirements in comparison to scheduling on a high-end target platform.
Understanding and tuning the performance of extreme-scale parallel computing systems demands a streaming approach due to the computational cost of applying offline algorithms to vast amounts of performance log data. Analyzing large streaming data is challenging because the rate of receiving data and limited time to comprehend data make it difficult for the analysts to sufficiently examine the data without missing important changes or patterns. To support streaming data analysis, we introduce a visual analytic framework comprising of three modules: data management, analysis, and interactive visualization. The data management module collects various computing and communication performance metrics from the monitored system using streaming data processing techniques and feeds the data to the other two modules. The analysis module automatically identifies important changes and patterns at the required latency. In particular, we introduce a set of online and progressive analysis methods for not only controlling the computational costs but also helping analysts better follow the critical aspects of the analysis results. Finally, the interactive visualization module provides the analysts with a coherent view of the changes and patterns in the continuously captured performance data. Through a multi-faceted case study on performance analysis of parallel discrete-event simulation, we demonstrate the effectiveness of our framework for identifying bottlenecks and locating outliers.
This paper introduces H-STREAM, a big stream/data processing pipelines evaluation engine that proposes stream processing operators as micro-services to support the analysis and visualisation of Big Data streams stemming from IoT (Internet of Things) environments. H-STREAM micro-services combine stream processing and data storage techniques tuned depending on the number of things producing streams, the pace at which they produce them, and the physical computing resources available for processing them online and delivering them to consumers. H-STREAM delivers stream processing and visualisation micro-services installed in a cloud environment. Micro-services can be composed for implementing specific stream aggregation analysis pipelines as queries. The paper presents an experimental validation using Microsoft Azure as a deployment environment for testing the capacity of H-STREAM for dealing with velocity and volume challenges in an (i) a neuroscience experiment and (in) a social connectivity analysis scenario running on IoT farms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا