Do you want to publish a course? Click here

Robust Attack Detection Approach for IIoT Using Ensemble Classifier

76   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generally, the risks associated with malicious threats are increasing for the IIoT and its related applications due to dependency on the Internet and the minimal resource availability of IoT devices. Thus, anomaly-based intrusion detection models for IoT networks are vital. Distinct detection methodologies need to be developed for the IIoT network as threat detection is a significant expectation of stakeholders. Machine learning approaches are considered to be evolving techniques that learn with experience, and such approaches have resulted in superior performance in various applications, such as pattern recognition, outlier analysis, and speech recognition. Traditional techniques and tools are not adequate to secure IIoT networks due to the use of various protocols in industrial systems and restricted possibilities of upgradation. In this paper, the objective is to develop a two-phase anomaly detection model to enhance the reliability of an IIoT network. In the first phase, SVM and Naive Bayes are integrated using an ensemble blending technique. K-fold cross-validation is performed while training the data with different training and testing ratios to obtain optimized training and test sets. Ensemble blending uses a random forest technique to predict class labels. An Artificial Neural Network (ANN) classifier that uses the Adam optimizer to achieve better accuracy is also used for prediction. In the second phase, both the ANN and random forest results are fed to the models classification unit, and the highest accuracy value is considered the final result. The proposed model is tested on standard IoT attack datasets, such as WUSTL_IIOT-2018, N_BaIoT, and Bot_IoT. The highest accuracy obtained is 99%. The results also demonstrate that the proposed model outperforms traditional techniques and thus improves the reliability of an IIoT network.



rate research

Read More

73 - Ji Wang , Qi Jing , Jianbo Gao 2019
For the dramatic increase of Android malware and low efficiency of manual check process, deep learning methods started to be an auxiliary means for Android malware detection these years. However, these models are highly dependent on the quality of datasets, and perform unsatisfactory results when the quality of training data is not good enough. In the real world, the quality of datasets without manually check cannot be guaranteed, even Google Play may contain malicious applications, which will cause the trained model failure. To address the challenge, we propose a robust Android malware detection approach based on selective ensemble learning, trying to provide an effective solution not that limited to the quality of datasets. The proposed model utilizes genetic algorithm to help find the best combination of the component learners and improve robustness of the model. Our results show that the proposed approach achieves a more robust performance than other approaches in the same area.
144 - Yuanhao Lai , Ian McLeod 2019
Both the median-based classifier and the quantile-based classifier are useful for discriminating high-dimensional data with heavy-tailed or skewed inputs. But these methods are restricted as they assign equal weight to each variable in an unregularized way. The ensemble quantile classifier is a more flexible regularized classifier that provides better performance with high-dimensional data, asymmetric data or when there are many irrelevant extraneous inputs. The improved performance is demonstrated by a simulation study as well as an application to text categorization. It is proven that the estimated parameters of the ensemble quantile classifier consistently estimate the minimal population loss under suitable general model assumptions. It is also shown that the ensemble quantile classifier is Bayes optimal under suitable assumptions with asymmetric Laplace distribution inputs.
96 - Deqiang Li , Qianmu Li 2020
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attackers can leverage this technique to improve attack effectiveness as well. This motivates us to investigate which kind of robustness the ensemble defense or effectiveness the ensemble attack can achieve, particularly when they combat with each other. We thus propose a new attack approach, named mixture of attacks, by rendering attackers capable of multiple generative methods and multiple manipulation sets, to perturb a malware example without ruining its malicious functionality. This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks. We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets. Experimental results show that the new adversarial training significantly enhances the robustness of deep neural networks against a wide range of attacks, ensemble methods promote the robustness when base classifiers are robust enough, and yet ensemble attacks can evade the enhanced malware detectors effectively, even notably downgrading the VirusTotal service.
While Water Treatment Networks (WTNs) are critical infrastructures for local communities and public health, WTNs are vulnerable to cyber attacks. Effective detection of attacks can defend WTNs against discharging contaminated water, denying access, destroying equipment, and causing public fear. While there are extensive studies in WTNs attack detection, they only exploit the data characteristics partially to detect cyber attacks. After preliminary exploring the sensing data of WTNs, we find that integrating spatio-temporal knowledge, representation learning, and detection algorithms can improve attack detection accuracy. To this end, we propose a structured anomaly detection framework to defend WTNs by modeling the spatio-temporal characteristics of cyber attacks in WTNs. In particular, we propose a spatio-temporal representation framework specially tailored to cyber attacks after separating the sensing data of WTNs into a sequence of time segments. This framework has two key components. The first component is a temporal embedding module to preserve temporal patterns within a time segment by projecting the time segment of a sensor into a temporal embedding vector. We then construct Spatio-Temporal Graphs (STGs), where a node is a sensor and an attribute is the temporal embedding vector of the sensor, to describe the state of the WTNs. The second component is a spatial embedding module, which learns the final fused embedding of the WTNs from STGs. In addition, we devise an improved one class-SVM model that utilizes a new designed pairwise kernel to detect cyber attacks. The devised pairwise kernel augments the distance between normal and attack patterns in the fused embedding space. Finally, we conducted extensive experimental evaluations with real-world data to demonstrate the effectiveness of our framework.
Critical role of Internet of Things (IoT) in various domains like smart city, healthcare, supply chain and transportation has made them the target of malicious attacks. Past works in this area focused on centralized Intrusion Detection System (IDS), assuming the existence of a central entity to perform data analysis and identify threats. However, such IDS may not always be feasible, mainly due to spread of data across multiple sources and gathering at central node can be costly. Also, the earlier works primarily focused on improving True Positive Rate (TPR) and ignored the False Positive Rate (FPR), which is also essential to avoid unnecessary downtime of the systems. In this paper, we first present an architecture for IDS based on hybrid ensemble model, named PHEC, which gives improved performance compared to state-of-the-art architectures. We then adapt this model to a federated learning framework that performs local training and aggregates only the model parameters. Next, we propose Noise-Tolerant PHEC in centralized and federated settings to address the label-noise problem. The proposed idea uses classifiers using weighted convex surrogate loss functions. Natural robustness of KNN classifier towards noisy data is also used in the proposed architecture. Experimental results on four benchmark datasets drawn from various security attacks show that our model achieves high TPR while keeping FPR low on noisy and clean data. Further, they also demonstrate that the hybrid ensemble models achieve performance in federated settings close to that of the centralized settings.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا