Do you want to publish a course? Click here

SEdroid: A Robust Android Malware Detector using Selective Ensemble Learning

74   0   0.0 ( 0 )
 Added by Ji Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

For the dramatic increase of Android malware and low efficiency of manual check process, deep learning methods started to be an auxiliary means for Android malware detection these years. However, these models are highly dependent on the quality of datasets, and perform unsatisfactory results when the quality of training data is not good enough. In the real world, the quality of datasets without manually check cannot be guaranteed, even Google Play may contain malicious applications, which will cause the trained model failure. To address the challenge, we propose a robust Android malware detection approach based on selective ensemble learning, trying to provide an effective solution not that limited to the quality of datasets. The proposed model utilizes genetic algorithm to help find the best combination of the component learners and improve robustness of the model. Our results show that the proposed approach achieves a more robust performance than other approaches in the same area.



rate research

Read More

208 - Rui Zhu , Chenglin Li , Di Niu 2018
With the growth of mobile devices and applications, the number of malicious software, or malware, is rapidly increasing in recent years, which calls for the development of advanced and effective malware detection approaches. Traditional methods such as signature-based ones cannot defend users from an increasing number of new types of malware or rapid malware behavior changes. In this paper, we propose a new Android malware detection approach based on deep learning and static analysis. Instead of using Application Programming Interfaces (APIs) only, we further analyze the source code of Android applications and create their higher-level graphical semantics, which makes it harder for attackers to evade detection. In particular, we use a call graph from method invocations in an Android application to represent the application, and further analyze method attributes to form a structured Program Representation Graph (PRG) with node attributes. Then, we use a graph convolutional network (GCN) to yield a graph representation of the application by embedding the entire graph into a dense vector, and classify whether it is a malware or not. To efficiently train such a graph convolutional network, we propose a batch training scheme that allows multiple heterogeneous graphs to be input as a batch. To the best of our knowledge, this is the first work to use graph representation learning for malware detection. We conduct extensive experiments from real-world sample collections and demonstrate that our developed system outperforms multiple other existing malware detection techniques.
We present BPFroid -- a novel dynamic analysis framework for Android that uses the eBPF technology of the Linux kernel to continuously monitor events of user applications running on a real device. The monitored events are collected from different components of the Android software stack: internal kernel functions, system calls, native library functions, and the Java API framework. As BPFroid hooks these events in the kernel, a malware is unable to trivially bypass monitoring. Moreover, using eBPF doesnt require any change to the Android system or the monitored applications. We also present an analytical comparison of BPFroid to other malware detection methods and demonstrate its usage by developing novel signatures to detect suspicious behavior that are based on it. These signatures are then evaluated using real apps. We also demonstrate how BPFroid can be used to capture forensic artifacts for further investigation. Our results show that BPFroid successfully alerts in real time when a suspicious behavioral signature is detected, without incurring a significant runtime performance overhead.
Due to its open-source nature, Android operating system has been the main target of attackers to exploit. Malware creators always perform different code obfuscations on their apps to hide malicious activities. Features extracted from these obfuscated samples through program analysis contain many useless and disguised features, which leads to many false negatives. To address the issue, in this paper, we demonstrate that obfuscation-resilient malware analysis can be achieved through contrastive learning. We take the Android malware classification as an example to demonstrate our analysis. The key insight behind our analysis is that contrastive learning can be used to reduce the difference introduced by obfuscation while amplifying the difference between malware and benign apps (or other types of malware). Based on the proposed analysis, we design a system that can achieve robust and interpretable classification of Android malware. To achieve robust classification, we perform contrastive learning on malware samples to learn an encoder that can automatically extract robust features from malware samples. To achieve interpretable classification, we transform the function call graph of a sample into an image by centrality analysis. Then the corresponding heatmaps are obtained by visualization techniques. These heatmaps can help users understand why the malware is classified as this family. We implement IFDroid and perform extensive evaluations on two widely used datasets. Experimental results show that IFDroid is superior to state-of-the-art Android malware familial classification systems. Moreover, IFDroid is capable of maintaining 98.2% true positive rate on classifying 8,112 obfuscated malware samples.
Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such as malware detection, where deep learning on images alleviates the need for comprehensively hand-crafted features generalising to different malware variants. We postulate that this research direction could become the next frontier in Android malware detection, and therefore requires a clear roadmap to ensure that new approaches indeed bring novel contributions. We contribute with a first building block by developing and assessing a baseline pipeline for image-based malware detection with straightforward steps. We propose DexRay, which converts the bytecode of the app DEX files into grey-scale vector images and feeds them to a 1-dimensional Convolutional Neural Network model. We view DexRay as foundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection. The performance of DexRay evaluated on over 158k apps demonstrates that, while simple, our approach is effective with a high detection rate(F1-score= 0.96). Finally, we investigate the impact of time decay and image-resizing on the performance of DexRay and assess its resilience to obfuscation. This work-in-progress paper contributes to the domain of Deep Learning based Malware detection by providing a sound, simple, yet effective approach (with available artefacts) that can be the basis to scope the many profound questions that will need to be investigated to fully develop this domain.
Although state-of-the-art PDF malware classifiers can be trained with almost perfect test accuracy (99%) and extremely low false positive rate (under 0.1%), it has been shown that even a simple adversary can evade them. A practically useful malware classifier must be robust against evasion attacks. However, achieving such robustness is an extremely challenging task. In this paper, we take the first steps towards training robust PDF malware classifiers with verifiable robustness properties. For instance, a robustness property can enforce that no matter how many pages from benign documents are inserted into a PDF malware, the classifier must still classify it as malicious. We demonstrate how the worst-case behavior of a malware classifier with respect to specific robustness properties can be formally verified. Furthermore, we find that training classifiers that satisfy formally verified robustness properties can increase the evasion cost of unbounded (i.e., not bounded by the robustness properties) attackers by eliminating simple evasion attacks. Specifically, we propose a new distance metric that operates on the PDF tree structure and specify two classes of robustness properties including subtree insertions and deletions. We utilize state-of-the-art verifiably robust training method to build robust PDF malware classifiers. Our results show that, we can achieve 92.27% average verified robust accuracy over three properties, while maintaining 99.74% accuracy and 0.56% false positive rate. With simple robustness properties, our robust model maintains 7% higher robust accuracy than all the baseline models against unrestricted whitebox attacks. Moreover, the state-of-the-art and new adaptive evolutionary attackers need up to 10 times larger $L_0$ feature distance and 21 times more PDF basic mutations (e.g., inserting and deleting objects) to evade our robust model than the baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا