Do you want to publish a course? Click here

Analytic approaches to periodically driven closed quantum systems: Methods and Applications

74   0   0.0 ( 0 )
 Added by Krishnendu Sengupta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a brief overview of some of the analytic perturbative techniques for the computation of the Floquet Hamiltonian for a periodically driven, or Floquet, quantum many-body system. The key technical points about each of the methods discussed are presented in a pedagogical manner. They are followed by a brief account of some chosen phenomena where these methods have provided useful insights. We provide an extensive discussion of the Floquet-Magnus expansion, the adiabatic-impulse approximation, and the Floquet perturbation theory. This is followed by a relatively short discourse on the rotating wave approximation, a Floquet-Magnus resummation technique and the Hamiltonian flow method. We also provide a discussion of some open problems which may possibly be addressed using these methods.



rate research

Read More

We study periodically driven closed systems with a long-ranged Hamiltonian by considering a generalized Kitaev chain with pairing terms which decay with distance as a power law characterized by exponent $alpha$. Starting from an initial unentangled state, we show that all local quantities relax to well-defined steady state values in the thermodynamic limit and after $n gg 1$ drive cycles for any $alpha$ and driving frequency $omega$. We introduce a distance measure, $mathcal{D}_l(n)$, that characterizes the approach of the reduced density matrix of a subsystem of $l$ sites to its final steady state. We chart out the $n$ dependence of ${mathcal D}_l(n)$ and identify a critical value $alpha=alpha_c$ below which they generically decay to zero as $(omega/n)^{1/2}$. For $alpha > alpha_c$, in contrast, ${mathcal D}_l(n) sim (omega/n)^{3/2}[(omega/n)^{1/2}]$ for $omega to infty [0]$ with at least one intermediate dynamical transition. We also study the mutual information propagation to understand the nature of the entanglement spreading in space with increasing $n$ for such systems. We point out existence of qualitatively new features in the space-time dependence of mutual information for $omega < omega^{(1)}_c$, where $omega^{(1)}_c$ is the largest critical frequency for the dynamical transition for a given $alpha$. One such feature is the presence of {it multiple} light cone-like structures which persists even when $alpha$ is large. We also show that the nature of space-time dependence of the mutual information of long-ranged Hamiltonians with $alpha le 2$ differs qualitatively from their short-ranged counterparts with $alpha > 2$ for any drive frequency and relate this difference to the behavior of the Floquet group velocity of such driven system.
Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence caused by the system-environment interactions causes the states deviating from the desired manners. How to protect quantum resources under the coexistence of active control and passive decoherence is of significance. Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum: Accompanying the formation of bound states in the energy spectrum, the decoherence can be suppressed. It supplies a guideline to control decoherence. Such idea can be generalized to systems under periodic driving. By virtue of manipulating Floquet bound states in the quasienergy spectrum, coherent control via periodic driving dubbed as Floquet engineering has become a versatile tool not only in controlling decoherence, but also in artificially synthesizing exotic topological phases. We will review the progress on quantum control in open and periodically driven systems. Special attention will be paid to the distinguished role played by the bound states and their controllability via periodic driving in suppressing decoherence and generating novel topological phases.
116 - Arnab Sen , Sourav Nandy , 2015
We study a class of periodically driven $d-$dimensional integrable models and show that after $n$ drive cycles with frequency $omega$, pure states with non-area-law entanglement entropy $S_n(l) sim l^{alpha(n,omega)}$ are generated, where $l$ is the linear dimension of the subsystem, and $d-1 le alpha(n,omega) le d$. We identify and analyze the crossover phenomenon from an area ($S sim l^{ d-1}$ for $dgeq1$) to a volume ($S sim l^{d}$) law and provide a criterion for their occurrence which constitutes a generalization of Hastings theorem to driven integrable systems in one dimension. We also find that $S_n$ generically decays to $S_{infty}$ as $(omega/n)^{(d+2)/2}$ for fast and $(omega/n)^{d/2}$ for slow periodic drives; these two dynamical phases are separated by a topological transition in the eigensprectrum of the Floquet Hamiltonian. This dynamical transition manifests itself in the temporal behavior of all local correlation functions and does not require a critical point crossing during the drive. We find that these dynamical phases show a rich re-entrant behavior as a function of $omega$ for $d=1$ models, and also discuss the dynamical transition for $d>1$ models. Finally, we study entanglement properties of the steady state and show that singular features (cusps and kinks in $d=1$) appear in $S_{infty}$ as a function of $omega$ whenever there is a crossing of the Floquet bands. We discuss experiments which can test our theory.
144 - Shaon Sahoo , Imke Schneider , 2019
Driving a quantum system periodically in time can profoundly alter its long-time correlations and give rise to exotic quantum states of matter. The complexity of the combination of many-body correlations and dynamic manipulations has the potential to uncover a whole field of new phenomena, but the theoretical and numerical understanding becomes extremely difficult. We now propose a promising numerical method by generalizing the density matrix renormalization group to a superposition of Fourier components of periodically driven many-body systems using Floquet theory. With this method we can study the full time-dependent quantum solution in a large parameter range for all evolution times, beyond the commonly used high-frequency approximations. Numerical results are presented for the isotropic Heisenberg antiferromagnetic spin-1/2 chain under both local(edge) and global driving for spin-spin correlations and temporal fluctuations. As the frequency is lowered, we demonstrate that more and more Fourier components become relevant and determine strong length- and frequency-dependent changes of the quantum correlations that cannot be described by effective static models.
Motivated to understand the asymptotic behavior of periodically driven thermodynamic systems, we study the prototypical example of Brownian particle, overdamped and underdamped, in harmonic potentials subjected to periodic driving. The harmonic strength and the coefficients of drift and diffusion are all taken to be $T$-periodic. We obtain the asymptotic distributions almost exactly treating driving nonperturbatively. In the underdamped case, we exploit the underlying $SL_2$ symmetry to obtain the asymptotic state, and study the dynamics and fluctuations of energies and entropy. We further obtain the two-time correlation functions, and investigate the responses to drift and diffusion perturbations in the presence of driving.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا