No Arabic abstract
In this paper the Feynman Green function for Maxwells theory in curved space-time is studied by using the Fock-Schwinger-DeWitt asymptotic expansion; the point-splitting method is then applied, since it is a valuable tool for regularizing divergent observables. Among these, the stress-energy tensor is expressed in terms of second covariant derivatives of the Hadamard Green function, which is also closely linked to the effective action; therefore one obtains a series expansion for the stress-energy tensor. Its divergent part can be isolated, and a concise formula is here obtained: by dimensional analysis and combinatorics, there are two kinds of terms: quadratic in curvature tensors (Riemann, Ricci tensors and scalar curvature) and linear in their second covariant derivatives. This formula holds for every space-time metric; it is made even more explicit in the physically relevant particular cases of Ricci-flat and maximally symmetric spaces, and fully evaluated for some examples of physical interest: Kerr and Schwarzschild metrics and de Sitter space-time.
Hydrodynamics of the non-relativistic compressible fluid in the curved spacetime is derived using the generalized framework of the stochastic variational method (SVM) for continuum medium. The fluid-stress tensor of the resultant equation becomes asymmetric for the exchange of the indices, differently from the standard Euclidean one. Its incompressible limit suggests that the viscous term should be represented with the Bochner Laplacian. Moreover the modified Navier-Stokes-Fourier (NSF) equation proposed by Brenner can be considered even in the curved spacetime. To confirm the compatibility with the symmetry principle, SVM is applied to the gauge-invariant Lagrangian of a charged compressible fluid and then the Lorentz force is reproduced as the interaction between the Abelian gauge fields and the viscous charged fluid.
Relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry is considered. The Fermi coordinates adapted to the time-like geodesic are utilized to describe the low-energy physics in the laboratory and to calculate the leading correction due to the curvature of the space-time geometry to the Schrodinger equation. The correction is employed to calculate the probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzchild black hole. Since the excited states decay due to spontaneous photon emission, this study provides the theoretical base for detection of small isolated black holes by observing the decay of the excited states as neutral hydrogen atoms in the vacuum are devoured by the black hole.
We employ a recently developed mode-sum regularization method to compute the renormalized stress-energy tensor of a quantum field in the Kerr background metric (describing a stationary spinning black hole). More specifically, we consider a minimally-coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case $a=0.7M$, using two different variants of the method: $t$-splitting and $varphi$-splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.
Semiclassical Physics in gravitational scenario, in its first approximation (1st order) cares only for the expectation value of stress energy tensor and ignores the inherent quantum fluctuations thereof. In the approach of stochastic gravity, on the other hand, these matter fluctuations are supposed to work as the source of geometry fluctuations and have the potential to render the results from 1st order semiclassical physics irrelevant. We study the object of central significance in stochastic gravity, i.e. the noise kernel, for a wide class of Friedmann space-times. Through an equivalence of quantum fields on de Sitter space-time and those on generic Friedmann universes, we obtain the noise kernel through the correlators of Stress Energy Tensor (SET) for fixed co-moving but large physical distances. We show that in many Friedmann universes including the expanding universes, the initial quantum fluctuations, the universe is born with, may remain invariant and important even at late times. Further, we explore the cosmological space-times where even after long times the quantum fluctuations remain strong and become dominant over large physical distances, which the matter driven universe is an example of. The study is carried out in minimal as well as non-minimal interaction settings. Implications of such quantum fluctuations are discussed.
The Snyder-de Sitter model is an extension of the Snyder model to a de Sitter background. It is called triply special relativity (TSR) because it is based on three fundamental parameters: speed of light, Planck mass, and the cosmological constant. In this paper, we study the three dimensional DKP oscillator for spin zero and one in the framework of Snyder-de Sitter algebra in momentum space. By using the technique of vector spherical harmonics the energy spectrum and the corresponding eigenfunctions are obtained for both cases.