No Arabic abstract
To measure the similarity of documents, the Wasserstein distance is a powerful tool, but it requires a high computational cost. Recently, for fast computation of the Wasserstein distance, methods for approximating the Wasserstein distance using a tree metric have been proposed. These tree-based methods allow fast comparisons of a large number of documents; however, they are unsupervised and do not learn task-specific distances. In this work, we propose the Supervised Tree-Wasserstein (STW) distance, a fast, supervised metric learning method based on the tree metric. Specifically, we rewrite the Wasserstein distance on the tree metric by the parent-child relationships of a tree and formulate it as a continuous optimization problem using a contrastive loss. Experimentally, we show that the STW distance can be computed fast, and improves the accuracy of document classification tasks. Furthermore, the STW distance is formulated by matrix multiplications, runs on a GPU, and is suitable for batch processing. Therefore, we show that the STW distance is extremely efficient when comparing a large number of documents.
Developing machine learning methods that are privacy preserving is today a central topic of research, with huge practical impacts. Among the numerous ways to address privacy-preserving learning, we here take the perspective of computing the divergences between distributions under the Differential Privacy (DP) framework -- being able to compute divergences between distributions is pivotal for many machine learning problems, such as learning generative models or domain adaptation problems. Instead of resorting to the popular gradient-based sanitization method for DP, we tackle the problem at its roots by focusing on the Sliced Wasserstein Distance and seamlessly making it differentially private. Our main contribution is as follows: we analyze the property of adding a Gaussian perturbation to the intrinsic randomized mechanism of the Sliced Wasserstein Distance, and we establish the sensitivityof the resulting differentially private mechanism. One of our important findings is that this DP mechanism transforms the Sliced Wasserstein distance into another distance, that we call the Smoothed Sliced Wasserstein Distance. This new differentially private distribution distance can be plugged into generative models and domain adaptation algorithms in a transparent way, and we empirically show that it yields highly competitive performance compared with gradient-based DP approaches from the literature, with almost no loss in accuracy for the domain adaptation problems that we consider.
Wasserstein GANs (WGANs), built upon the Kantorovich-Rubinstein (KR) duality of Wasserstein distance, is one of the most theoretically sound GAN models. However, in practice it does not always outperform other variants of GANs. This is mostly due to the imperfect implementation of the Lipschitz condition required by the KR duality. Extensive work has been done in the community with different implementations of the Lipschitz constraint, which, however, is still hard to satisfy the restriction perfectly in practice. In this paper, we argue that the strong Lipschitz constraint might be unnecessary for optimization. Instead, we take a step back and try to relax the Lipschitz constraint. Theoretically, we first demonstrate a more general dual form of the Wasserstein distance called the Sobolev duality, which relaxes the Lipschitz constraint but still maintains the favorable gradient property of the Wasserstein distance. Moreover, we show that the KR duality is actually a special case of the Sobolev duality. Based on the relaxed duality, we further propose a generalized WGAN training scheme named Sobolev Wasserstein GAN (SWGAN), and empirically demonstrate the improvement of SWGAN over existing methods with extensive experiments.
The Wasserstein probability metric has received much attention from the machine learning community. Unlike the Kullback-Leibler divergence, which strictly measures change in probability, the Wasserstein metric reflects the underlying geometry between outcomes. The value of being sensitive to this geometry has been demonstrated, among others, in ordinal regression and generative modelling. In this paper we describe three natural properties of probability divergences that reflect requirements from machine learning: sum invariance, scale sensitivity, and unbiased sample gradients. The Wasserstein metric possesses the first two properties but, unlike the Kullback-Leibler divergence, does not possess the third. We provide empirical evidence suggesting that this is a serious issue in practice. Leveraging insights from probabilistic forecasting we propose an alternative to the Wasserstein metric, the Cramer distance. We show that the Cramer distance possesses all three desired properties, combining the best of the Wasserstein and Kullback-Leibler divergences. To illustrate the relevance of the Cramer distance in practice we design a new algorithm, the Cramer Generative Adversarial Network (GAN), and show that it performs significantly better than the related Wasserstein GAN.
Projection robust Wasserstein (PRW) distance, or Wasserstein projection pursuit (WPP), is a robust variant of the Wasserstein distance. Recent work suggests that this quantity is more robust than the standard Wasserstein distance, in particular when comparing probability measures in high-dimensions. However, it is ruled out for practical application because the optimization model is essentially non-convex and non-smooth which makes the computation intractable. Our contribution in this paper is to revisit the original motivation behind WPP/PRW, but take the hard route of showing that, despite its non-convexity and lack of nonsmoothness, and even despite some hardness results proved by~citet{Niles-2019-Estimation} in a minimax sense, the original formulation for PRW/WPP textit{can} be efficiently computed in practice using Riemannian optimization, yielding in relevant cases better behavior than its convex relaxation. More specifically, we provide three simple algorithms with solid theoretical guarantee on their complexity bound (one in the appendix), and demonstrate their effectiveness and efficiency by conducing extensive experiments on synthetic and real data. This paper provides a first step into a computational theory of the PRW distance and provides the links between optimal transport and Riemannian optimization.
Many information retrieval algorithms rely on the notion of a good distance that allows to efficiently compare objects of different nature. Recently, a new promising metric called Word Movers Distance was proposed to measure the divergence between text passages. In this paper, we demonstrate that this metric can be extended to incorporate term-weighting schemes and provide more accurate and computationally efficient matching between documents using entropic regularization. We evaluate the benefits of both extensions in the task of cross-lingual document retrieval (CLDR). Our experimental results on eight CLDR problems suggest that the proposed methods achieve remarkable improvements in terms of Mean Reciprocal Rank compared to several baselines.