No Arabic abstract
A power system electromechanical wave propagates from the disturbance location to the rest of system, influencing various types of protections. In addition, since more power-electronics-interfaced generation and energy storage devices are being integrated into power systems, electromechanical wave propagation speeds in the future power systems are likely to change accordingly. In this paper, GPS-synchronized measurement data from a wide-area synchrophasor measurement system FNET/GridEye are used to analyze the characteristics of electromechanical wave propagation in the U.S. Eastern Interconnection (EI) system. Afterwards, high levels of photovoltaic (PV) penetration are modeled in the EI to investigate the influences of a typical power-electronics--interfaced resource on the electromechanical wave propagation speed. The result shows a direct correlation between the local penetration level of inverter-based generation and the electromechanical wave propagation speed.
We consider the problem of stability analysis for distribution grids with droop-controlled inverters and dynamic distribution power lines. The inverters are modeled as voltage sources with controllable frequency and amplitude. This problem is very challenging for large networks as numerical simulations and detailed eigenvalue analysis are impactical. Motivated by the above limitations, we present in this paper a systematic and computationally efficient framework for stability analysis of inverter-based distribution grids. To design our framework, we use tools from singular perturbation and Lyapunov theories. Interestingly, we show that stability of the fast dynamics of the power grid depends only on the voltage droop gains of the inverters while, stability of the slow dynamics, depends on both voltage and frequency droop gains. Finally, by leveraging these timescale separation properties, we derive sufficient conditions on the frequency and voltage droop gains of the inverters that warrant stability of the full system. We illustrate our theoretical results through a numerical example on the IEEE 13-bus distribution grid.
In modern power grids, a local failure or attack can trigger catastrophic cascading failures, which make it challenging to assess the attack vulnerability of power grids. In this Brief, we define the $K$-link attack problem and study the attack vulnerability of power grids under cascading failures. Particularly, we propose a link centrality measure based on both topological and electrical properties of power grids. According to this centrality, we propose a greedy attack algorithm and an optimal attack algorithm. Simulation results on standard IEEE bus test data show that the optimal attack is better than the greedy attack and the traditional PSO-based attack in fracturing power grids. Moreover, the greedy attack has smaller computational complexity than the optimal attack and the PSO-based attack with an adequate attack efficiency. Our work helps to understand the vulnerability of power grids and provides some clues for securing power grids.
Global warming leads the world to think of a different way of transportation: avoiding internal combustion engines and electrifying the transportation sector. With a high penetration of electric vehicle (EV) charging stations on an existing power distribution network, the impact may be consistent. The loads of the fast-charging stations would potentially result in increased peak load demand, reduced reserve margins, voltage instability, and reliability problems. The degrading performance of the power system due to the negative impact of the EV charging stations can even lead to penalties to be paid by the distribution system operator (DSO). This paper: i) investigates the impact of the ac{ev} charging station on the distribution network for what concerns voltage drop on MV feeders and loading of transformers in primary substations, and ii) proposes a mitigation mechanism. A realistic typical Italian grid has been used to assess the impact of EV charging stations and to validate the mitigation mechanism.
Quantifying the impact of inverter-based distributed generation (DG) sources on power-flow distribution system cases is arduous. Existing distribution system tools predominately model distributed generation sources as either negative PQ loads or as a PV generator and then employed a PV-PQ switching algorithm to mimic Volt/VAR support. These models neglect the unique characteristics of inverter-based distributed generation sources, have scalability and convergence issues, and are ill-suited for increasing solar penetration scenarios. This work proposes an inverter-based DG model accounting for the inverters topology, sensing position, and control strategies. The model extends recently introduced analytical positive sequence generator models for three-phase studies. The use of circuit-simulation based heuristics help achieve robust convergence. Simulation of the PG&E prototypical feeders using a prototype solver demonstrate the models accuracy and efficacy.
In this paper, a phasor measurement unit (PMU)-based wide-area damping control method is proposed to damp the interarea oscillations that threaten the modern power system stability and security. Utilizing the synchronized PMU data, the proposed almost model-free approach can achieve an effective damping for the selected modes using a minimum number of synchronous generators. Simulations are performed to show the validity of the proposed wide-area damping control scheme.