Do you want to publish a course? Click here

Stability Analysis of Droop-Controlled Inverter-Based Power Grids via Timescale Separation

104   0   0.0 ( 0 )
 Added by Stefanos Baros
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider the problem of stability analysis for distribution grids with droop-controlled inverters and dynamic distribution power lines. The inverters are modeled as voltage sources with controllable frequency and amplitude. This problem is very challenging for large networks as numerical simulations and detailed eigenvalue analysis are impactical. Motivated by the above limitations, we present in this paper a systematic and computationally efficient framework for stability analysis of inverter-based distribution grids. To design our framework, we use tools from singular perturbation and Lyapunov theories. Interestingly, we show that stability of the fast dynamics of the power grid depends only on the voltage droop gains of the inverters while, stability of the slow dynamics, depends on both voltage and frequency droop gains. Finally, by leveraging these timescale separation properties, we derive sufficient conditions on the frequency and voltage droop gains of the inverters that warrant stability of the full system. We illustrate our theoretical results through a numerical example on the IEEE 13-bus distribution grid.

rate research

Read More

The presence of constant power loads (CPLs) in dc shipboard microgrids may lead to unstable conditions. The present work investigates the stability properties of dc microgrids where CPLs are fed by fuel cells (FCs), and energy storage systems (ESSs) equipped with voltage droop control. With respect to the previous literature, the dynamics of the duty cycles of the dc-dc converters implementing the droop regulation are considered. A mathematical model has been derived, and tuned to best mimic the behavior of the electrical representation implemented in DIgSILENT. Then the model is used to find the sufficient conditions for stability with respect to the droop coefficient, the dc-bus capacitor, and the inductances of the dc-dc converters.
97 - Shutang You 2021
A power system electromechanical wave propagates from the disturbance location to the rest of system, influencing various types of protections. In addition, since more power-electronics-interfaced generation and energy storage devices are being integrated into power systems, electromechanical wave propagation speeds in the future power systems are likely to change accordingly. In this paper, GPS-synchronized measurement data from a wide-area synchrophasor measurement system FNET/GridEye are used to analyze the characteristics of electromechanical wave propagation in the U.S. Eastern Interconnection (EI) system. Afterwards, high levels of photovoltaic (PV) penetration are modeled in the EI to investigate the influences of a typical power-electronics--interfaced resource on the electromechanical wave propagation speed. The result shows a direct correlation between the local penetration level of inverter-based generation and the electromechanical wave propagation speed.
Quantifying the impact of inverter-based distributed generation (DG) sources on power-flow distribution system cases is arduous. Existing distribution system tools predominately model distributed generation sources as either negative PQ loads or as a PV generator and then employed a PV-PQ switching algorithm to mimic Volt/VAR support. These models neglect the unique characteristics of inverter-based distributed generation sources, have scalability and convergence issues, and are ill-suited for increasing solar penetration scenarios. This work proposes an inverter-based DG model accounting for the inverters topology, sensing position, and control strategies. The model extends recently introduced analytical positive sequence generator models for three-phase studies. The use of circuit-simulation based heuristics help achieve robust convergence. Simulation of the PG&E prototypical feeders using a prototype solver demonstrate the models accuracy and efficacy.
High penetration of renewable generation poses great challenge to power system operation due to its uncertain nature. In droop-controlled microgrids, the voltage volatility induced by renewable uncertainties is aggravated by the high droop gains. This paper proposes a chance-constrained optimal power flow (CC-OPF) problem with power flow routers (PFRs) to better regulate the voltage profile in microgrids. PFR refer to a general type of network-side controller that brings more flexibility to the power network. Comparing with the normal CC-OPF that relies on power injection flexibility only, the proposed model introduces a new dimension of control from power network to enhance system performance under renewable uncertainties. Since the inclusion of PFRs complicates the problem and makes common solvers no longer apply directly, we design an iterative solution algorithm. For the subproblem in each iteration, chance constraints are transformed into equivalent deterministic ones via sensitivity analysis, so that the subproblem can be efficiently solved by the convex relaxation method. The proposed method is verified on the modified IEEE 33-bus system and the results show that PFRs make a significant contribution to mitigating the voltage volatility and make the system operate in a more economic and secure way.
This paper proposes a computational method to efficiently and quickly estimate stability regions of droop control slopes for modular multilevel converter (MMC)-based multiterminal dc (MTDC) systems. The proposed method is based on a general small-signal model consisting of a dc grid with arbitrary topology and MMCs with dq controllers. The general small-signal model developed by a systematic way can be used for small-disturbance stability analysis. To verify the developed small-signal model, a comparison between the developed model calculated in MATLAB and the detailed switching model simulated in PSCAD/EMTDC is conducted, which demonstrates the accuracy of the developed small-signal model. Based on the eigenvalues sensitivity and the Taylor Series of eigenvalues, a set of inequality constraints are derived and used to efficiently estimate the stability regions of all coupled slopes of the droop characteristics. It is helpful for efficiently designing and adjusting the droop controller parameters for the MMC-MTDC systems. The effectiveness of the proposed method is demonstrated by the several examinations including the supremum test and the stability region sketch on accuracy and feasibility.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا