No Arabic abstract
This paper deals with the small oscillations of two circular cylinders immersed in a viscous stagnant fluid. A new theoretical approach based on an Helmholtz expansion and a bipolar coordinate system is presented to estimate the fluid forces acting on the two bodies. We show that these forces are linear combinations of the {textcolor{black}{cylinder accelerations}} and velocities, through viscous fluid added coefficients. {textcolor{black}{To assess the validity of this theory, we consider the case of two equal size cylinders, one of them being stationary while the other one is forced sinusoidally}}. The self-added mass and damping coefficients are shown to decrease with both the Stokes number and the separation distance. The cross-added mass and damping coefficients tend to increase with the Stokes number and the separation distance. Compared to the inviscid results, the effect of viscosity is to add a correction term which scales as $Sk^{-1/2}$. When the separation distance is sufficiently large, the two cylinders behave as if they were independent and the Stokes predictions for an isolated cylinder are recovered. Compared to previous works, the present theory offers a simple and flexible alternative for an easy determination of the fluid forces and related added coefficients. To our knowledge, this is also the first time that a numerical approach based on a penalization method is presented in the context of fluid-structure interactions for relatively small Stokes numbers, and successfully compared to theoretical predictions.
A potential theory is presented for the problem of two moving cylinders, with possibly different radii, large motions, immersed in an perfect stagnant fluid. We show that the fluid force is the superposition of an added mass term, related to the time variations of the potential, and a quadratic term related to its spatial variations. We provide new simple and exact analytical expressions for the fluid added mass coefficients, in which the effect of the confinement is made explicit. The self-added mass (resp. cross-added mass) is shown to decrease (resp. increase) with the separation distance and increase (resp. decreases) with the radius ratio. We then consider the case in which one cylinder translates along the line joining the centers with a constant speed. We show that the two cylinders are repelled from each other, with a force that diverges to infinity at impact. We extend our approach to the case in which one cylinder is imposed a sinusoidal vibration. We show that the force on the stationnary cylinder and the vibration displacement have opposite (resp. identical) axial (resp. transverse) directions. For large vibration amplitudes, this force is strongly altered by the nonlinear effects induced by the spatial variations of the potential. The force on the vibrating cylinder is in phase with the imposed displacement and is mainly driven by the added mass term. The results of this paper are of particular interest for engineers who need to grab the essential features associated to the vibration of a solid body in a still fluid.
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakly viscous, nearly monochromatic wave train on deep water. It contains a term which provides a mechanism for frequency downshifting in the absence of wind and wave breaking. The equation does not preserve the spectral mean. Numerical simulations demonstrate that the spectral mean typically decreases and that the spectral peak decreases for certain initial conditions. The linear stability analysis of the plane-wave solutions of the viscous Dysthe system demonstrates that waves with wave numbers closer to zero decay more slowly than waves with wave numbers further from zero. Comparisons between experimental data and numerical simulations of the NLS, dissipative NLS, Dysthe, and viscous Dysthe systems establish that the viscous Dysthe system accurately models data from experiments in which frequency downshifting was observed and experiments in which frequency downshift was not observed.
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a viscous fluid as a whole, and takes into account multiple physical effects, including gravity, viscosity, and surface tension. Dimensionle
Hydrodynamic interactions between two identical elastic dumbbells settling under gravity in a viscous fluid at low-Reynolds-number are investigated within the point-particle model. Evolution of a benchmark initial configuration is studied, in which the dumbbells are vertical and their centres are aligned horizontally. Rigid dumbbells and pairs of separate beads starting from the same positions tumble periodically while settling down. We find that elasticity (which breaks time-reversal symmetry of the motion) significantly affects the systems dynamics. This is remarkable taking into account that elastic forces are always much smaller than gravity. We observe oscillating motion of the elastic dumbbells, which tumble and change their length non-periodically. Independently of the value of the spring constant, a horizontal hydrodynamic repulsion appears between the dumbbells - their centres of mass move apart from each other horizontally. The shift is fast for moderate values of the spring constant k, and slows down when k tends to zero or to infinity; in these limiting cases we recover the periodic dynamics reported in the literature. For moderate values of the spring constant, and different initial configurations, we observe the existence of a universal time-dependent solution to which the system converges after an initial relaxation phase. The tumbling time and the width of the trajectories in the centre-of-mass frame increase with time. In addition to its fundamental significance, the benchmark solution presented here is important to understand general features of systems with larger number of elastic particles, at regular and random configurations.
The Navier-Stokes-Fourier model for a 3D thermoconducting viscous fluid, where the evolution equation for the temperature T contains a term proportional to the rate of energy dissipation, is investigated analitically at the light of the rotational invariance property. Two cases are considered: the Couette flow and a flow with a radial velocity between two rotating impermeable and porous coaxial cylinders, respectively. In both cases, we show the existence of a maximum value of T, T_max, when the difference of temperature Delta T=T_2-T_1 on the surfaces of the cylinders is assigned. The role of T_max is discussed in the context of different physical situations.