Do you want to publish a course? Click here

Nonlinear Dynamics of a Viscous Bubbly Fluid

86   0   0.0 ( 0 )
 Added by Alexei Cheviakov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a viscous fluid as a whole, and takes into account multiple physical effects, including gravity, viscosity, and surface tension. Dimensionle



rate research

Read More

90 - V. Grassi , R.A. Leo , G. Soliani 2001
The Navier-Stokes-Fourier model for a 3D thermoconducting viscous fluid, where the evolution equation for the temperature T contains a term proportional to the rate of energy dissipation, is investigated analitically at the light of the rotational invariance property. Two cases are considered: the Couette flow and a flow with a radial velocity between two rotating impermeable and porous coaxial cylinders, respectively. In both cases, we show the existence of a maximum value of T, T_max, when the difference of temperature Delta T=T_2-T_1 on the surfaces of the cylinders is assigned. The role of T_max is discussed in the context of different physical situations.
Truncated Taylor expansions of smooth flow maps are used in Hamiltons principle to derive a multiscale Lagrangian particle representation of ideal fluid dynamics. Numerical simulations for scattering of solutions at one level of truncation are found to produce solutions at higher levels. These scattering events to higher levels in the Taylor expansion are interpreted as modeling a cascade to smaller scales.
Hydrodynamic interactions between two identical elastic dumbbells settling under gravity in a viscous fluid at low-Reynolds-number are investigated within the point-particle model. Evolution of a benchmark initial configuration is studied, in which the dumbbells are vertical and their centres are aligned horizontally. Rigid dumbbells and pairs of separate beads starting from the same positions tumble periodically while settling down. We find that elasticity (which breaks time-reversal symmetry of the motion) significantly affects the systems dynamics. This is remarkable taking into account that elastic forces are always much smaller than gravity. We observe oscillating motion of the elastic dumbbells, which tumble and change their length non-periodically. Independently of the value of the spring constant, a horizontal hydrodynamic repulsion appears between the dumbbells - their centres of mass move apart from each other horizontally. The shift is fast for moderate values of the spring constant k, and slows down when k tends to zero or to infinity; in these limiting cases we recover the periodic dynamics reported in the literature. For moderate values of the spring constant, and different initial configurations, we observe the existence of a universal time-dependent solution to which the system converges after an initial relaxation phase. The tumbling time and the width of the trajectories in the centre-of-mass frame increase with time. In addition to its fundamental significance, the benchmark solution presented here is important to understand general features of systems with larger number of elastic particles, at regular and random configurations.
361 - J.D. Carter , A. Govan 2015
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakly viscous, nearly monochromatic wave train on deep water. It contains a term which provides a mechanism for frequency downshifting in the absence of wind and wave breaking. The equation does not preserve the spectral mean. Numerical simulations demonstrate that the spectral mean typically decreases and that the spectral peak decreases for certain initial conditions. The linear stability analysis of the plane-wave solutions of the viscous Dysthe system demonstrates that waves with wave numbers closer to zero decay more slowly than waves with wave numbers further from zero. Comparisons between experimental data and numerical simulations of the NLS, dissipative NLS, Dysthe, and viscous Dysthe systems establish that the viscous Dysthe system accurately models data from experiments in which frequency downshifting was observed and experiments in which frequency downshift was not observed.
71 - Klaus D. Usadel 2017
The rotational dynamics of magnetic nano particles in rotating magnetic fields in the presence of thermal noise is studied both theoretically and by performing numerical calculations. Kinetic equations for the dynamics of particles with uniaxial magnetic anisotropy are studied and the phase lag between the rotating magnetic moment and the driving field is obtained. It is shown that for large enough anisotropy energy the magnetic moment is locked to the anisotropy axis so that the particle behaves like a rotating magnetic dipole. The corresponding rigid dipole model is analyzed both numerically by solving the appropriate Fokker-Planck equation and analytically by applying an effective field method. In the special case of a rotating magnetic field applied analytic results are obtained in perfect agreement with numerical results based on the Fokker-Planck equation. The analytic formulas derived are not restricted to small magnetic fields or low frequencies and are therefore important for applications. The illustrative numerical calculations presented are performed for magnetic parameters typical for iron oxide.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا