Do you want to publish a course? Click here

Influence of fatty alcohol mixing ratios on the physicochemical properties of Stearyl--Cetyl Alcohol--Polysorbate 60--Water ternary System: Insights from Experiments and Computer Simulations

99   0   0.0 ( 0 )
 Added by Toan T. Nguyen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The structure and stability of ternary systems prepared with polysorbate 60 and various combinations of cetyl (C16) and stearyl (C18) alcohols (fatty alcohol 16g, polysorbate 4g, water 180g) were examined as they aged over 3 months at 25oC. Rheological results showed that the consistency of these systems increased initially during roughly the first week of aging, which was succeeded by little changes in consistency (systems containing from 30% to 70% C18, with the 50% C18 system showing the highest consistencies in viscosity and elasticity) or significant breakdown of structure (remaining systems). The formation and/or disintegration of all ternary systems were also detected by microscopy and differential scanning calorimetry experiments. This study emphasizes the fact that the structure and consistency of ternary systems are dominantly controlled by the swelling capacity of the lamellar $alpha-$crystalline gel phase. When the conversion of this gel phase into non-swollen $beta$- or $gamma$-crystals occurs, systems change from semisolids to fluids. Molecular dynamics simulations were performed to provide important details on the molecular mechanism of our ternary systems. Computational results supported the hypothesis experimentally proposed for the stability of the mixed system being due to an increase in the flexibility, hence an increase in the configurational entropy of the chain tip of the alcohol with a longer hydrocarbon chain (with the highest flexibility observed in the 50:50 C18:C16 system). This finding is in excellent agreement with experimental conclusions. Additionally, simulation data show that in the mixed system, the alcohol with shorter hydrocarbon chain becomes more rigid. These molecular details could not be available in experimental measurements



rate research

Read More

Computer simulations using atomistic model are carried out to investigate the stability of ternary systems of pure or mixed fatty alcohols, cetrimide, and water. These semi$-$solid oil-in-water systems are used as the main component of pharmaceutical creams. Experiments show that the mixed alcohol systems are more stable than pure ones. The current experimental hypothesis is that this is the result of the length mismatch of the alkyl chains. This leads to higher configurational entropy of the chain tip of the longer alcohol molecules. Our simulation results support this hypothesis. The results also show that the shorter alcohol molecules become stiffer with higher values of the deuterium order parameters and smaller area per molecule. The magnitude in fluctuations in the area per molecule also increases in mixed systems, indicating a higher configurational entropy. Analysis of the molecular structure of simulated systems also shows good agreements with experimental data.
Isothermal-isobaric molecular dynamics simulations have been performed to examine a broad set of properties of the model water-1,2-dimethoxyethane (DME) mixture as a function of composition. The SPC-E and TIP4P-Ew water models and the modified TraPPE model for DME were applied. Our principal focus was to explore the trends of behaviour of the structural properties in terms of the radial distribution functions, coordination numbers and number of hydrogen bonds between molecules of different species, and of conformations of DME molecules. Thermodynamic properties, such as density, molar volume, enthalpy of mixing and heat capacity at constant pressure have been examined. Finally, the self-diffusion coefficients of species and the dielectric constant of the system were calculated and analyzed.
Hypothesis: Aging in colloidal suspensions manifests as a reduction in kinetic freedom of the colloids. In aqueous suspensions of charged colloids, the role of inter-particle electrostatics interactions on the aging dynamics is well debated. Despite water being the dispersion medium, the influence of water structure on the physicochemical properties of aging colloids has never been considered before. Laponite, a model hectorite clay, could be used to evaluate the relative contributions of medium structure and electrostatics in determining the physicochemical properties of aging colloidal suspensions. Experiments: The structure of the dispersion medium is modified either by incorporating uncharged/charged kosmotropic (structure-inducing) or chaotropic (structure-disrupting) molecules or by changing suspension temperature. A new protocol, wherein the medium is heated before adding clay particles, is also introduced to evaluate the effects of hydrogen bond disruptions on suspension aging. Dynamic light scattering, rheological measurements and particle-scale imaging are employed to evaluate the physicochemical properties of the suspensions. Findings: A strong influence of medium structure is evident when inter-particle electrostatic interactions are weak. Enhancement and disruption of hydrogen bonds in the medium are, respectively, strongly correlated with acceleration and delay of suspension aging dynamics. The physicochemical properties of charged clay colloidal suspensions are therefore controlled by altering hydrogen bonding in the dispersion medium.
Surface freezing is a phenomenon in which crystallization is enhanced at a vapor-liquid interface. In some systems, such as $n$-alkanes, this enhancement is dramatic, and results in the formation of a crystalline layer at the free interface even at temperatures slightly above the equilibrium bulk freezing temperature. There are, however, systems in which the enhancement is purely kinetic, and only involves faster nucleation at or near the interface. The first, thermodynamic, type of surface freezing is easier to confirm in experiments, requiring only the verification of the existence of crystalline order at the interface. The second, kinetic, type of surface freezing is far more difficult to prove experimentally. One material that is suspected of undergoing the second type of surface freezing is liquid water. Despite strong indications that the freezing of liquid water is kinetically enhanced at vapor-liquid interfaces, the findings are far from conclusive, and the topic remains controversial. In this perspective, we present a simple thermodynamic framework to understand conceptually and distinguish these two types of surface freezing. We then briefly survey fifteen years of experimental and computational work aimed at elucidating the surface freezing conundrum in water.
Graphene/(Poly)vinyl alcohol (PVA) composite film with thickness $60 mu m$ were synthesized by solidification of a PVA solution comprising of dispersed graphene nanosheets. The close proximity of the graphene sheets enables the fluctuation induced tunneling of electrons to occur from one sheet to another. The dielectric data show that the present system can be simulated to a parallel resistance-capacitor network. The high frequency exponent of the frequency variation of the ac conductivity indicates that the charge carriers move in a two-dimensional space. The sample preparation technique will be helpful for synthesizing flexible conductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا