Do you want to publish a course? Click here

Exploring multi-task multi-lingual learning of transformer models for hate speech and offensive speech identification in social media

106   0   0.0 ( 0 )
 Added by Shubhanshu Mishra
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Hate Speech has become a major content moderation issue for online social media platforms. Given the volume and velocity of online content production, it is impossible to manually moderate hate speech related content on any platform. In this paper we utilize a multi-task and multi-lingual approach based on recently proposed Transformer Neural Networks to solve three sub-tasks for hate speech. These sub-tasks were part of the 2019 shared task on hate speech and offensive content (HASOC) identification in Indo-European languages. We expand on our submission to that competition by utilizing multi-task models which are trained using three approaches, a) multi-task learning with separate task heads, b) back-translation, and c) multi-lingual training. Finally, we investigate the performance of various models and identify instances where the Transformer based models perform differently and better. We show that it is possible to to utilize different combined approaches to obtain models that can generalize easily on different languages and tasks, while trading off slight accuracy (in some cases) for a much reduced inference time compute cost. We open source an updated version of our HASOC 2019 code with the new improvements at https://github.com/socialmediaie/MTML_HateSpeech.



rate research

Read More

Most hate speech detection research focuses on a single language, generally English, which limits their generalisability to other languages. In this paper we investigate the cross-lingual hate speech detection task, tackling the problem by adapting the hate speech resources from one language to another. We propose a cross-lingual capsule network learning model coupled with extra domain-specific lexical semantics for hate speech (CCNL-Ex). Our model achieves state-of-the-art performance on benchmark datasets from AMI@Evalita2018 and AMI@Ibereval2018 involving three languages: English, Spanish and Italian, outperforming state-of-the-art baselines on all six language pairs.
Islamophobic hate speech on social media inflicts considerable harm on both targeted individuals and wider society, and also risks reputational damage for the host platforms. Accordingly, there is a pressing need for robust tools to detect and classify Islamophobic hate speech at scale. Previous research has largely approached the detection of Islamophobic hate speech on social media as a binary task. However, the varied nature of Islamophobia means that this is often inappropriate for both theoretically-informed social science and effectively monitoring social media. Drawing on in-depth conceptual work we build a multi-class classifier which distinguishes between non-Islamophobic, weak Islamophobic and strong Islamophobic content. Accuracy is 77.6% and balanced accuracy is 83%. We apply the classifier to a dataset of 109,488 tweets produced by far right Twitter accounts during 2017. Whilst most tweets are not Islamophobic, weak Islamophobia is considerably more prevalent (36,963 tweets) than strong (14,895 tweets). Our main input feature is a gloVe word embeddings model trained on a newly collected corpus of 140 million tweets. It outperforms a generic word embeddings model by 5.9 percentage points, demonstrating the importan4ce of context. Unexpectedly, we also find that a one-against-one multi class SVM outperforms a deep learning algorithm.
End-to-end automatic speech recognition (ASR) systems are increasingly popular due to their relative architectural simplicity and competitive performance. However, even though the average accuracy of these systems may be high, the performance on rare content words often lags behind hybrid ASR systems. To address this problem, second-pass rescoring is often applied leveraging upon language modeling. In this paper, we propose a second-pass system with multi-task learning, utilizing semantic targets (such as intent and slot prediction) to improve speech recognition performance. We show that our rescoring model trained with these additional tasks outperforms the baseline rescoring model, trained with only the language modeling task, by 1.4% on a general test and by 2.6% on a rare word test set in terms of word-error-rate relative (WERR). Our best ASR system with multi-task LM shows 4.6% WERR deduction compared with RNN Transducer only ASR baseline for rare words recognition.
Hate speech and profanity detection suffer from data sparsity, especially for languages other than English, due to the subjective nature of the tasks and the resulting annotation incompatibility of existing corpora. In this study, we identify profane subspaces in word and sentence representations and explore their generalization capability on a variety of similar and distant target tasks in a zero-shot setting. This is done monolingually (German) and cross-lingually to closely-related (English), distantly-related (French) and non-related (Arabic) tasks. We observe that, on both similar and distant target tasks and across all languages, the subspace-based representations transfer more effectively than standard BERT representations in the zero-shot setting, with improvements between F1 +10.9 and F1 +42.9 over the baselines across all tested monolingual and cross-lingual scenarios.
With growing role of social media in shaping public opinions and beliefs across the world, there has been an increased attention to identify and counter the problem of hate speech on social media. Hate speech on online spaces has serious manifestations, including social polarization and hate crimes. While prior works have proposed automated techniques to detect hate speech online, these techniques primarily fail to look beyond the textual content. Moreover, few attempts have been made to focus on the aspects of interpretability of such models given the social and legal implications of incorrect predictions. In this work, we propose a deep neural multi-modal model that can: (a) detect hate speech by effectively capturing the semantics of the text along with socio-cultural context in which a particular hate expression is made, and (b) provide interpretable insights into decisions of our model. By performing a thorough evaluation of different modeling techniques, we demonstrate that our model is able to outperform the existing state-of-the-art hate speech classification approaches. Finally, we show the importance of social and cultural context features towards unearthing clusters associated with different categories of hate.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا