Do you want to publish a course? Click here

Progress of the CHARA/SPICA project

155   0   0.0 ( 0 )
 Added by Cyril Pannetier
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

CHARA/SPICA (Stellar Parameters and Images with a Cophased Array) is currently being developed at Observatoire de la C^ote dAzur. It will be installed at the visible focus of the CHARA Array by the end of 2021. It has been designed to perform a large survey of fundamental stellar parameters with, in the possible cases, a detailed imaging of the surface or environment of stars. To reach the required precision and sensitivity, CHARA/SPICA combines a low spectral resolution mode R = 140 in the visible and single-mode fibers fed by the AO stages of CHARA. This setup generates additional needs before the interferometric combination: the compensation of atmospheric refraction and longitudinal dispersion, and the fringe stabilization. In this paper, we present the main features of the 6-telescopes fibered visible beam combiner (SPICA-VIS) together with the first laboratory and on-sky results of the fringe tracker (SPICA-FT). We describe also the new fringe-tracker simulator developed in parallel to SPICA-FT.



rate research

Read More

The space physics community continues to grow and become both more interdisciplinary and more intertwined with commercial and government operations. This has created a need for a framework to easily identify what projects can be used for specific applications and how close the tool is to routine autonomous or on-demand implementation and operation. We propose the Application Usability Level (AUL) framework and publicizing AULs to help the community quantify the progress of successful applications, metrics, and validation efforts. This framework will also aid the scientific community by supplying the type of information needed to build off of previously published work and publicizing the applications and requirements needed by the user communities. In this paper, we define the AUL framework, outline the milestones required for progression to higher AULs, and provide example projects utilizing the AUL framework. This work has been completed as part of the activities of the Assessment of Understanding and Quantifying Progress working group which is part of the International Forum for Space Weather Capabilities Assessment.
We present the B-BOP instrument, a polarimetric camera on board the future ESA-JAXA SPICA far-infrared space observatory. B-BOP will allow the study of the magnetic field in various astrophysical environments thanks to its unprecedented ability to measure the linear polarization of the submillimeter light. The maps produced by B-BOP will contain not only information on total power, but also on the degree and the angle of polarization, simultaneously in three spectral bands (70, 200 and 350 microns). The B-BOP detectors are ultra-sensitive silicon bolometers that are intrinsically sensitive to polarization. Their NEP is close to 10E-18 W/sqrt(Hz). We will present the optical and thermal architectures of the instrument, we will detail the bolometer design and we will show the expected performances of the instrument based on preliminary lab work.
SPICA is a mid to far infra-red space mission to explore the processes that form galaxies, stars and planets. SPICA/SAFARI is the far infrared spectrometer that provides near-background limited observations between 34 and 230 micrometers. The core of SAFARI consists of 4 grating modules, dispersing light onto 5 arrays of TES detectors per module. The grating modules provide low resolution (250) instantaneous spectra over the entire wavelength range. The high resolution (1500 to 12000) mode is accomplished by placing a Fourier Transform Spectrometer (FTS) in front of the gratings. Each grating module detector sees an interferogram from which the high resolution spectrum can be constructed. SAFARI data will be a convolution of complex spectral, temporal and spatial information. Along with spectral calibration accuracy of <1%, a relative flux calibration of 1% and an absolute flux calibration accuracy of 10% are required. This paper will discuss the calibration strategy and its impact on the instrument design of SAFARI
434 - K. Enya , T. Kotani , K. Haze 2011
We present the SPICA Coronagraphic Instrument (SCI), which has been designed for a concentrated study of extra-solar planets (exoplanets). SPICA mission provides us with a unique opportunity to make high contrast observations because of its large telescope aperture, the simple pupil shape, and the capability for making infrared observations from space. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in infrared, while the monitoring of transiting planets is another important target. The specification and an overview of the design of the instrument are shown. In the SCI, coronagraphic and non-coronagraphic modes are applicable for both an imaging and a spectroscopy. The core wavelength range and the goal contrast of the coronagraphic mode are 3.5--27$mu$m, and 10$^{-6}$, respectively. Two complemental designs of binary shaped pupil mask coronagraph are presented. The SCI has capability of simultaneous observations of one target using two channels, a short channel with an InSb detector and a long wavelength channel with a Si:As detector. We also give a report on the current progress in the development of key technologies for the SCI.
130 - Michihiro Takami 2009
The SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is a proposed mid-to-far infrared (4-200 um) astronomy mission, scheduled for launch in 2017. A single, 3.5m aperture telescope would provide superior image quality at 5-200 um, and its very cold (~5 K) instrumentation would provide superior sensitivity in the 25-200 um wavelength regimes. This would provide a breakthrough opportunity for studies of exoplanets, protoplanetary and debris disk, and small solar system bodies. This paper summarizes the potential scientific impacts for the proposed instrumentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا