Do you want to publish a course? Click here

Calibration strategy for the SPICA/SAFARI instrument

68   0   0.0 ( 0 )
 Added by Russell Shipman
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

SPICA is a mid to far infra-red space mission to explore the processes that form galaxies, stars and planets. SPICA/SAFARI is the far infrared spectrometer that provides near-background limited observations between 34 and 230 micrometers. The core of SAFARI consists of 4 grating modules, dispersing light onto 5 arrays of TES detectors per module. The grating modules provide low resolution (250) instantaneous spectra over the entire wavelength range. The high resolution (1500 to 12000) mode is accomplished by placing a Fourier Transform Spectrometer (FTS) in front of the gratings. Each grating module detector sees an interferogram from which the high resolution spectrum can be constructed. SAFARI data will be a convolution of complex spectral, temporal and spatial information. Along with spectral calibration accuracy of <1%, a relative flux calibration of 1% and an absolute flux calibration accuracy of 10% are required. This paper will discuss the calibration strategy and its impact on the instrument design of SAFARI



rate research

Read More

We investigate the case of CII 158 micron observations for SPICA/SAFARI using a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in length. The interplay of thermal instability, magnetic field and self-gravity leads to the formation of cold, dense clumps within a warm, turbulent interclump medium. We sample several clumps along a line of sight through the simulated cube and use them as input density profiles in the Meudon PDR code. This allows us to derive intensity predictions for the CII 158 micron line and provide time estimates for the mapping of a given sky area.
386 - K. Enya , T. Kotani , K. Haze 2011
We present the SPICA Coronagraphic Instrument (SCI), which has been designed for a concentrated study of extra-solar planets (exoplanets). SPICA mission provides us with a unique opportunity to make high contrast observations because of its large telescope aperture, the simple pupil shape, and the capability for making infrared observations from space. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in infrared, while the monitoring of transiting planets is another important target. The specification and an overview of the design of the instrument are shown. In the SCI, coronagraphic and non-coronagraphic modes are applicable for both an imaging and a spectroscopy. The core wavelength range and the goal contrast of the coronagraphic mode are 3.5--27$mu$m, and 10$^{-6}$, respectively. Two complemental designs of binary shaped pupil mask coronagraph are presented. The SCI has capability of simultaneous observations of one target using two channels, a short channel with an InSb detector and a long wavelength channel with a Si:As detector. We also give a report on the current progress in the development of key technologies for the SCI.
265 - Y. Doi , Z. Wang , T. Ueda 2009
We describe a novel GaAs/AlGaAs double-quantum-well device for the infrared photon detection, called Charge-Sensitive Infrared Phototransistor (CSIP). The principle of CSIP detector is the photo-excitation of an intersubband transition in a QW as an charge integrating gate and the signal amplification by another QW as a channel with very high gain, which provides us with extremely high responsivity (10^4 -- 10^6 A/W). It has been demonstrated that the CSIP designed for the mid-infrared wavelength (14.7 um) has an excellent sensitivity; the noise equivalent power (NEP) of 7x10^-19 W/rHz with the quantum efficiency of ~2%. Advantages of the CSIP against the other highly sensitive detectors are, huge dynamic range of >10^6, low output impedance of 10^3 -- 10^4 Ohms, and relatively high operation temperature (>2K). We discuss possible applications of the CSIP to FIR photon detection covering 35 -- 60 um waveband, which is a gap uncovered with presently available photoconductors.
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a sounding rocket experiment that observes the soft X-ray spectrum of the Sun from 6.0 - 24 Angstrom (0.5 - 2.0 keV), successfully launched on 30 July 2021. End-to-end alignment of the flight instrument and calibration experiments are carried out using the X-ray and Cryogenic Facility (XRCF) at NASA Marshall Space Flight Center. In this paper, we present the calibration experiments of MaGIXS, which include wavelength calibration, measurement of line spread function, and determination of effective area. Finally, we use the measured instrument response function to predict the expected count rates for MaGIXS flight observation looking at a typical solar active region
97 - Luigi Pacciani 2012
The Scientific objectives of the LOFT mission, e.g., the study of the Neutron Star equation of state and of the Strong Gravity, require accurate energy, time and flux calibration for the 500k channels of the SDD detectors, as well as the knowledge of the detector dead-time and of the detector response with respect to the incident angle of the photons. We report here the evaluations made to asses the calibration issues for the LAD instrument. The strategies for both ground and on-board calibrations, including astrophysical observations, show that the goals are achievable within the current technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا