Do you want to publish a course? Click here

Decay amplitudes to three hadrons from finite-volume matrix elements

245   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating $K to 3pi$ weak decay, the isospin-breaking $eta to 3pi$ QCD transition, and the electromagnetic $gamma^*to 3pi$ amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic $g-2$.



rate research

Read More

A relation is presented between single-hadron long-range matrix elements defined in a finite Euclidean spacetime, and the corresponding infinite-volume Minkowski amplitudes. This relation is valid in the kinematic region where any number of two-hadron states can simultaneously go on shell, so that the effects of strongly-coupled intermediate channels are included. These channels can consist of non-identical particles with arbitrary intrinsic spins. The result accommodates general Lorentz structures as well as non-zero momentum transfer for the two external currents inserted between the single-hadron states. The formalism, therefore, generalizes the work by Christ et al.~[Phys.Rev. D91 114510 (2015)], and extends the reach of lattice quantum chromodynamics (QCD) to a wide class of new observables beyond meson mixing and rare decays. Applications include Compton scattering of the pion ($pi gamma^star to [pi pi, K overline K] to pi gamma^star$), kaon ($K gamma^star to [pi K, eta K] to K gamma^star$) and nucleon ($N gamma^star to N pi to N gamma^star$), as well as double-$beta$ decays, and radiative corrections to the single-$beta$ decay, of QCD-stable hadrons. The framework presented will further facilitate generalization of the result to studies of nuclear amplitudes involving two currents from lattice QCD.
Baryon distribution amplitudes (DAs) are crucial for the theory of hard exclusive reactions. We present a calculation of the first few moments of the leading-twist nucleon DA within lattice QCD. In addition we deal with the normalization of the next-to-leading (twist-four) DAs. The matrix elements determining the latter quantities are also responsible for proton decay in Grand Unified Theories. Our lattice evaluation makes use of gauge field configurations generated with two flavors of clover fermions. The relevant operators are renormalized nonperturbatively with the final results given in the MSbar scheme. We find that the deviation of the leading-twist nucleon DA from its asymptotic form is less pronounced than sometimes claimed in the literature.
We present a model-independent calculation of hadron matrix elements for all dimension-six operators associated with baryon number violating processes using lattice QCD. The calculation is performed with the Wilson quark action in the quenched approximation at $beta=6/g^2=6.0$ on a $28^2times 48times 80$ lattice. Our results cover all the matrix elements required to estimate the partial lifetimes of (proton,neutron)$to$($pi,K,eta$) +(${bar u},e^+,mu^+$) decay modes. We point out the necessity of disentangling two form factors that contribute to the matrix element; previous calculations did not make the separation, which led to an underestimate of the physical matrix elements. With a correct separation, we find that the matrix elements have values 3-5 times larger than the smallest estimates employed in phenomenological analyses of the nucleon decays, which could give strong constraints on several GUT models. We also find that the values of the matrix elements are comparable with the tree-level predictions of chiral lagrangian.
We demonstrate that the leading and next-to-leading finite-volume effects in the evaluation of leptonic decay widths of pseudoscalar mesons at $O(alpha)$ are universal, i.e. they are independent of the structure of the meson. This is analogous to a similar result for the spectrum but with some fundamental differences, most notably the presence of infrared divergences in decay amplitudes. The leading non-universal, structure-dependent terms are of $O(1/L^2)$ (compared to the $O(1/L^3)$ leading non-universal corrections in the spectrum). We calculate the universal finite-volume effects, which requires an extension of previously developed techniques to include a dependence on an external three-momentum (in our case, the momentum of the final state lepton). The result can be included in the strategy proposed in Ref.,cite{Carrasco:2015xwa} for using lattice simulations to compute the decay widths at $O(alpha)$, with the remaining finite-volume effects starting at order $O(1/L^2)$. The methods developed in this paper can be generalised to other decay processes, most notably to semileptonic decays, and hence open the possibility of a new era in precision flavour physics.
Using the general formalism presented in Refs. [1,2], we study the finite-volume effects for the $mathbf{2}+mathcal{J}tomathbf{2}$ matrix element of an external current coupled to a two-particle state of identical scalars with perturbative interactions. Working in a finite cubic volume with periodicity $L$, we derive a $1/L$ expansion of the matrix element through $mathcal O(1/L^5)$ and find that it is governed by two universal current-dependent parameters, the scalar charge and the threshold two-particle form factor. We confirm the result through a numerical study of the general formalism and additionally through an independent perturbative calculation. We further demonstrate a consistency with the Feynman-Hellmann theorem, which can be used to relate the $1/L$ expansions of the ground-state energy and matrix element. The latter gives a simple insight into why the leading volume corrections to the matrix element have the same scaling as those in the energy, $1/L^3$, in contradiction to earlier work, which found a $1/L^2$ contribution to the matrix element. We show here that such a term arises at intermediate stages in the perturbative calculation, but cancels in the final result.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا