No Arabic abstract
We present a model-independent calculation of hadron matrix elements for all dimension-six operators associated with baryon number violating processes using lattice QCD. The calculation is performed with the Wilson quark action in the quenched approximation at $beta=6/g^2=6.0$ on a $28^2times 48times 80$ lattice. Our results cover all the matrix elements required to estimate the partial lifetimes of (proton,neutron)$to$($pi,K,eta$) +(${bar u},e^+,mu^+$) decay modes. We point out the necessity of disentangling two form factors that contribute to the matrix element; previous calculations did not make the separation, which led to an underestimate of the physical matrix elements. With a correct separation, we find that the matrix elements have values 3-5 times larger than the smallest estimates employed in phenomenological analyses of the nucleon decays, which could give strong constraints on several GUT models. We also find that the values of the matrix elements are comparable with the tree-level predictions of chiral lagrangian.
Baryon distribution amplitudes (DAs) are crucial for the theory of hard exclusive reactions. We present a calculation of the first few moments of the leading-twist nucleon DA within lattice QCD. In addition we deal with the normalization of the next-to-leading (twist-four) DAs. The matrix elements determining the latter quantities are also responsible for proton decay in Grand Unified Theories. Our lattice evaluation makes use of gauge field configurations generated with two flavors of clover fermions. The relevant operators are renormalized nonperturbatively with the final results given in the MSbar scheme. We find that the deviation of the leading-twist nucleon DA from its asymptotic form is less pronounced than sometimes claimed in the literature.
Hadronic matrix elements of proton decay are essential ingredients to bridge the grand unification theory to low energy observables like proton lifetime. In this paper we non-perturbatively calculate the matrix elements, relevant for the process of a nucleon decaying into a pseudoscalar meson and an anti-lepton through generic baryon number violating four-fermi operators. Lattice QCD with 2+1 flavor dynamical domain-wall fermions with the {it direct} method, which is direct measurement of matrix element from three-point function without chiral perturbation theory, are used for this study to have good control over the lattice discretization error, operator renormalization, and chiral extrapolation. The relevant form factors for possible transition process from an initial proton or neutron to a final pion or kaon induced by all types of three quark operators are obtained through three-point functions of (nucleon)-(three-quark operator)-(meson) with physical kinematics. In this study all the relevant systematic uncertainties of the form factors are taken into account for the first time, and the total error is found to be the range 30%-40% for $pi$ and 20%-40% for $K$ final states.
We present an improved result of lattice computation of the proton decay matrix elements in $N_f=2+1$ QCD. In this study, the significant improvement of statistical accuracy by adopting the error reduction technique of All-mode-averaging, is achieved for relevant form factor to proton (and also neutron) decay on the gauge ensemble of $N_f=2+1$ domain-wall fermions in $m_pi=0.34$--0.69 GeV on 2.7~fm$^3$ lattice as used in our previous work cite{Aoki:2013yxa}. We improve total accuracy of matrix elements to 10--15% from 30--40% for $prightarrowpi e^+$ or from 20--40% for $prightarrow K bar u$. The accuracy of the low energy constants $alpha$ and $beta$ in the leading-order baryon chiral perturbation theory (BChPT) of proton decay are also improved. The relevant form factors of $prightarrow pi$ estimated through the direct lattice calculation from three-point function appear to be 1.4 times smaller than those from the indirect method using BChPT with $alpha$ and $beta$. It turns out that the utilization of our result will provide a factor 2--3 larger proton partial lifetime than that obtained using BChPT. We also discuss the use of these parameters in a dark matter model.
Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model operators is summarized, and connections with effective field theories and nuclear models are outlined. Lattice QCD calculations of nuclear matrix elements can provide guidance for low-energy nuclear reactions in astrophysics, dark matter direct detection experiments, and experimental searches for violations of the symmetries of the Standard Model, including searches for additional CP violation in the hadronic and leptonic sectors, baryon-number violation, and lepton-number or flavor violation. Similarly, important inputs to neutrino experiments seeking to determine the neutrino-mass hierarchy and oscillation parameters, as well as other electroweak and beyond-Standard-Model processes can be determined. The phenomenological implications of existing studies of electroweak and beyond-Standard-Model matrix elements in light nuclear systems are discussed, and future prospects for the field toward precision studies of these matrix elements are outlined.
We present a new analysis method that allows one to understand and model excited state contributions in observables that are dominated by a pion pole. We apply this method to extract axial and (induced) pseudoscalar nucleon isovector form factors, which satisfy the constraints due to the partial conservation of the axial current up to expected discretization effects. Effective field theory predicts that the leading contribution to the (induced) pseudoscalar form factor originates from an exchange of a virtual pion, and thus exhibits pion pole dominance. Using our new method, we can recover this behavior directly from lattice data. The numerical analysis is based on a large set of ensembles generated by the CLS effort, including physical pion masses, large volumes (with up to $96^3 times 192$ sites and $L m_pi = 6.4$), and lattice spacings down to $0.039 , text{fm}$, which allows us to take all the relevant limits. We find that some observables are much more sensitive to the choice of parametrization of the form factors than others. On the one hand, the $z$-expansion leads to significantly smaller values for the axial dipole mass than the dipole ansatz ($M_A^{text{$z$-exp}}=1.02(10) , text{GeV}$ versus $M_A^{text{dipole}} = 1.31(8) , text{GeV}$). On the other hand, we find that the result for the induced pseudoscalar coupling at the muon capture point is almost independent of the choice of parametrization ($g_P^{star text{$z$-exp}} = 8.68(45)$ and $g_P^{star text{dipole}} = 8.30(24)$), and is in good agreement with both, chiral perturbation theory predictions and experimental measurement via ordinary muon capture. We also determine the axial coupling constant $g_A$.