No Arabic abstract
One-class classification (OCC) aims to learn an effective data description to enclose all normal training samples and detect anomalies based on the deviation from the data description. Current state-of-the-art OCC models learn a compact normality description by hyper-sphere minimisation, but they often suffer from overfitting the training data, especially when the training set is small or contaminated with anomalous samples. To address this issue, we introduce the interpolated Gaussian descriptor (IGD) method, a novel OCC model that learns a one-class Gaussian anomaly classifier trained with adversarially interpolated training samples. The Gaussian anomaly classifier differentiates the training samples based on their distance to the Gaussian centre and the standard deviation of these distances, offering the model a discriminability w.r.t. the given samples during training. The adversarial interpolation is enforced to consistently learn a smooth Gaussian descriptor, even when the training data is small or contaminated with anomalous samples. This enables our model to learn the data description based on the representative normal samples rather than fringe or anomalous samples, resulting in significantly improved normality description. In extensive experiments on diverse popular benchmarks, including MNIST, Fashion MNIST, CIFAR10, MVTec AD and two medical datasets, IGD achieves better detection accuracy than current state-of-the-art models. IGD also shows better robustness in problems with small or contaminated training sets. Code is available at https://github.com/tianyu0207/IGD.
Deep one-class classification variants for anomaly detection learn a mapping that concentrates nominal samples in feature space causing anomalies to be mapped away. Because this transformation is highly non-linear, finding interpretations poses a significant challenge. In this paper we present an explainable deep one-class classification method, Fully Convolutional Data Description (FCDD), where the mapped samples are themselves also an explanation heatmap. FCDD yields competitive detection performance and provides reasonable explanations on common anomaly detection benchmarks with CIFAR-10 and ImageNet. On MVTec-AD, a recent manufacturing dataset offering ground-truth anomaly maps, FCDD sets a new state of the art in the unsupervised setting. Our method can incorporate ground-truth anomaly maps during training and using even a few of these (~5) improves performance significantly. Finally, using FCDDs explanations we demonstrate the vulnerability of deep one-class classification models to spurious image features such as image watermarks.
We present a two-stage framework for deep one-class classification. We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations. The framework not only allows to learn better representations, but also permits building one-class classifiers that are faithful to the target task. We argue that classifiers inspired by the statistical perspective in generative or discriminative models are more effective than existing approaches, such as a normality score from a surrogate classifier. We thoroughly evaluate different self-supervised representation learning algorithms under the proposed framework for one-class classification. Moreover, we present a novel distribution-augmented contrastive learning that extends training distributions via data augmentation to obstruct the uniformity of contrastive representations. In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks, including novelty and anomaly detection. Finally, we present visual explanations, confirming that the decision-making process of deep one-class classifiers is intuitive to humans. The code is available at https://github.com/google-research/deep_representation_one_class.
Classical approaches for one-class problems such as one-class SVM and isolation forest require careful feature engineering when applied to structured domains like images. State-of-the-art methods aim to leverage deep learning to learn appropriate features via two main approaches. The first approach based on predicting transformations (Golan & El-Yaniv, 2018; Hendrycks et al., 2019a) while successful in some domains, crucially depends on an appropriate domain-specific set of transformations that are hard to obtain in general. The second approach of minimizing a classical one-class loss on the learned final layer representations, e.g., DeepSVDD (Ruff et al., 2018) suffers from the fundamental drawback of representation collapse. In this work, we propose Deep Robust One-Class Classification (DROCC) that is both applicable to most standard domains without requiring any side-information and robust to representation collapse. DROCC is based on the assumption that the points from the class of interest lie on a well-sampled, locally linear low dimensional manifold. Empirical evaluation demonstrates that DROCC is highly effective in two different one-class problem settings and on a range of real-world datasets across different domains: tabular data, images (CIFAR and ImageNet), audio, and time-series, offering up to 20% increase in accuracy over the state-of-the-art in anomaly detection. Code is available at https://github.com/microsoft/EdgeML.
Few-shot classification studies the problem of quickly adapting a deep learner to understanding novel classes based on few support images. In this context, recent research efforts have been aimed at designing more and more complex classifiers that measure similarities between query and support images, but left the importance of feature embeddings seldom explored. We show that the reliance on sophisticated classifier is not necessary and a simple classifier applied directly to improved feature embeddings can outperform state-of-the-art methods. To this end, we present a new method named textbf{DCAP} in which we investigate how one can improve the quality of embeddings by leveraging textbf{D}ense textbf{C}lassification and textbf{A}ttentive textbf{P}ooling. Specifically, we propose to pre-train a learner on base classes with abundant samples to solve dense classification problem first and then fine-tune the learner on a bunch of randomly sampled few-shot tasks to adapt it to few-shot scenerio or the test time scenerio. We suggest to pool feature maps by applying attentive pooling instead of the widely used global average pooling (GAP) to prepare embeddings for few-shot classification during meta-finetuning. Attentive pooling learns to reweight local descriptors, explaining what the learner is looking for as evidence for decision making. Experiments on two benchmark datasets show the proposed method to be superior in multiple few-shot settings while being simpler and more explainable. Code is available at: url{https://github.com/Ukeyboard/dcap/}.
Deep neural networks (DNNs) often suffer from catastrophic forgetting during incremental learning (IL) --- an abrupt degradation of performance on the original set of classes when the training objective is adapted to a newly added set of classes. Existing IL approaches tend to produce a model that is biased towards either the old classes or new classes, unless with the help of exemplars of the old data. To address this issue, we propose a class-incremental learning paradigm called Deep Model Consolidation (DMC), which works well even when the original training data is not available. The idea is to first train a separate model only for the new classes, and then combine the two individual models trained on data of two distinct set of classes (old classes and new classes) via a novel double distillation training objective. The two existing models are consolidated by exploiting publicly available unlabeled auxiliary data. This overcomes the potential difficulties due to the unavailability of original training data. Compared to the state-of-the-art techniques, DMC demonstrates significantly better performance in image classification (CIFAR-100 and CUB-200) and object detection (PASCAL VOC 2007) in the single-headed IL setting.