Do you want to publish a course? Click here

Class-incremental Learning via Deep Model Consolidation

170   0   0.0 ( 0 )
 Added by Junting Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep neural networks (DNNs) often suffer from catastrophic forgetting during incremental learning (IL) --- an abrupt degradation of performance on the original set of classes when the training objective is adapted to a newly added set of classes. Existing IL approaches tend to produce a model that is biased towards either the old classes or new classes, unless with the help of exemplars of the old data. To address this issue, we propose a class-incremental learning paradigm called Deep Model Consolidation (DMC), which works well even when the original training data is not available. The idea is to first train a separate model only for the new classes, and then combine the two individual models trained on data of two distinct set of classes (old classes and new classes) via a novel double distillation training objective. The two existing models are consolidated by exploiting publicly available unlabeled auxiliary data. This overcomes the potential difficulties due to the unavailability of original training data. Compared to the state-of-the-art techniques, DMC demonstrates significantly better performance in image classification (CIFAR-100 and CUB-200) and object detection (PASCAL VOC 2007) in the single-headed IL setting.



rate research

Read More

The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones. To address this problem, we represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes. On this basis, we propose the TOpology-Preserving knowledge InCrementer (TOPIC) framework. TOPIC mitigates the forgetting of the old classes by stabilizing NGs topology and improves the representation learning for few-shot new classes by growing and adapting NG to new training samples. Comprehensive experimental results demonstrate that our proposed method significantly outperforms other state-of-the-art class-incremental learning methods on CIFAR100, miniImageNet, and CUB200 datasets.
We address the problem of class incremental learning, which is a core step towards achieving adaptive vision intelligence. In particular, we consider the task setting of incremental learning with limited memory and aim to achieve better stability-plasticity trade-off. To this end, we propose a novel two-stage learning approach that utilizes a dynamically expandable representation for more effective incremental concept modeling. Specifically, at each incremental step, we freeze the previously learned representation and augment it with additional feature dimensions from a new learnable feature extractor. This enables us to integrate new visual concepts with retaining learned knowledge. We dynamically expand the representation according to the complexity of novel concepts by introducing a channel-level mask-based pruning strategy. Moreover, we introduce an auxiliary loss to encourage the model to learn diverse and discriminate features for novel concepts. We conduct extensive experiments on the three class incremental learning benchmarks and our method consistently outperforms other methods with a large margin.
Modern computer vision applications suffer from catastrophic forgetting when incrementally learning new concepts over time. The most successful approaches to alleviate this forgetting require extensive replay of previously seen data, which is problematic when memory constraints or data legality concerns exist. In this work, we consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL), where an incremental learning agent must learn new concepts over time without storing generators or training data from past tasks. One approach for DFCIL is to replay synthetic images produced by inverting a frozen copy of the learners classification model, but we show this approach fails for common class-incremental benchmarks when using standard distillation strategies. We diagnose the cause of this failure and propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation, and show that our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks. Our method even outperforms several standard replay based methods which store a coreset of images.
82 - Ankur Singh 2020
Although deep learning performs really well in a wide variety of tasks, it still suffers from catastrophic forgetting -- the tendency of neural networks to forget previously learned information upon learning new tasks where previous data is not available. Earlier methods of incremental learning tackle this problem by either using a part of the old dataset, by generating exemplars or by using memory networks. Although, these methods have shown good results but using exemplars or generating them, increases memory and computation requirements. To solve these problems we propose an adversarial discriminator based method that does not make use of old data at all while training on new tasks. We particularly tackle the class incremental learning problem in image classification, where data is provided in a class-based sequential manner. For this problem, the network is trained using an adversarial loss along with the traditional cross-entropy loss. The cross-entropy loss helps the network progressively learn new classes while the adversarial loss helps in preserving information about the existing classes. Using this approach, we are able to outperform other state-of-the-art methods on CIFAR-100, SVHN, and MNIST datasets.
The challenge of the Class Incremental Learning~(CIL) lies in difficulty for a learner to discern the old classes data from the new as no previous classes data is preserved. In this paper, we reveal three causes for catastrophic forgetting at the representational level, namely, representation forgetting, representation overlapping, and classifier deviation. Based on the observation above, we propose a new CIL framework, Contrastive Class Concentration for CIL (C4IL) to alleviate the phenomenon of representation overlapping that works in both memory-based and memory-free methods. Our framework leverages the class concentration effect of contrastive representation learning, therefore yielding a representation distribution with better intra-class compatibility and inter-class separability. Quantitative experiments showcase the effectiveness of our framework: it outperforms the baseline methods by 5% in terms of the average and top-1 accuracy in 10-phase and 20-phase CIL. Qualitative results also demonstrate that our method generates a more compact representation distribution that alleviates the overlapping problem.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا