Do you want to publish a course? Click here

Identification of the Nitrogen Interstitial as Origin of the 3.1 eV Photoluminescence Band in Hexagonal Boron Nitride

148   0   0.0 ( 0 )
 Added by B\\'alint Aradi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nitrogen interstitials (N$_mathrm{i}$) have the lowest formation energy among intrinsic defects of hexagonal boron nitride (hBN) under n-type and N-rich conditions. Using an optimized hybrid functional, which reproduces the gap and satisfies the generalized Koopmans condition, an N$_mathrm{i}$ configuration is found which is lower in energy than the ones reported so far. The (0/-) charge transition level is also much deeper, so N$_mathrm{i}$ acts as a very efficient compensating center in n-type samples. Its calculated photoluminescence (PL) at 3.0 eV agrees well with the position of an N-sensitive band measured at 3.1 eV. It has been also found that the nitrogen vacancy (V$_mathrm{N}$) cannot be the origin of the three boron electron (TBC) electron paramagnetic resonance (EPR) center and in thermal equilibrium it cannot even exist in n-type samples.

rate research

Read More

Extensive photochemical and spectroscopic properties of the $V_B^-$ defect in hexagonal boron nitride are calculated, concluding that the observed photoemission associated with recently observed optically-detected magnetic resonance is most likely of (1)3E to (1)3A2 origin. Rapid intersystem crossing from the defects triplet to singlet manifolds explains the observed short excited-state lifetime and very low quantum yield. New experimental results reveal smaller intrinsic spectral bandwidths than previously recognized, interpreted in terms spectral narrowing and zero-phonon-line shifting induced by the Jahn-Teller effect. Different types of computational methods are applied to map out the complex triplet and singlet defect manifolds, including the doubly ionised formulation of the equation-of-motion coupled-cluster theory that is designed to deal with the open-shell nature of defect states, and mixed quantum-mechanics/molecular-mechanics schemes enabling 5763-atom simulations. Two other energetically feasible spectral assignments from amongst the singlet and triplet manifolds are considered, but ruled out based on inappropriate photochemical properties.
258 - Perine Jaffrennou 2007
The excitonic recombinations in hexagonal boron nitride (hBN) are investigated with spatially resolved cathodoluminescence spectroscopy in the UV range. Cathodoluminescence images of an individual hBN crystallite reveals that the 215 nm free excitonic line is quite homogeneously emitted along the crystallite whereas the 220 nm and 227 nm excitonic emissions are located in specific regions of the crystallite. Transmission electron microscopy images show that these regions contain a high density of crystalline defects. This suggests that both the 220 nm and 227 nm emissions are produced by the recombination of excitons bound to structural defects.
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiments on hexagonal Boron Nitride show a clear signature of a phase transition from hexagonal to wurtzite at ~ 13 GPa which is reversible on decompression. These results are contrasted with the pressure behavior of carbon nanotubes and graphite.
The stacking orders in layered hexagonal boron nitride bulk and bilayers are studied using high-level ab initio theory (local second-order Moller-Plesset perturbation theory, LMP2). Our results show that both electrostatic and London dispersion interactions are responsible for interlayer distance and stacking order, with AA being the most stable one. The minimum energy sliding path includes only the AA high-symmetry stacking, and the energy barrier is 3.4 meV per atom for the bilayer. State-of-the-art Density-functionals with and without London dispersion correction fail to correctly describe the interlayer energies with the exception of PBEsol that agrees very well with our LMP2 results and experiment.
Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm earlier theoretical predictions about the structure of these defects and identify new features in the electron energy-loss spectra (EELS) of B atoms using high resolution chemical maps, highlighting differences between these areas and pristine sample regions. We correlate our experimental data with calculations which help explain our observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا