We prove stability of logarithmic tangent sheaves of singular hypersurfaces D of the projective space with constraints on the dimension and degree of the singularities of D. As main application, we prove that determinants and symmetric determinants have stable logarithmic tangent sheaves and we describe an open dense piece of the associated moduli space.
The goal of this paper is to start a study of aCM and Ulrich sheaves on non-integral projective varieties. We show that any aCM vector bundle of rank two on the double plane is a direct sum of line bundles. As a by-product, any aCM vector bundle of rank two on a sufficiently high dimensional quadric hypersurface also splits. We consider aCM and Ulrich vector bundles on a multiple hyperplanes and prove the existence of such bundles that do not split, if the multiple hyperplane is linearly embedded into a sufficiently high dimensional projective space. Then we restrict our attention to the double plane and give a classification of aCM sheaves of rank at most $3/2$ on the double plane and describe the family of isomorphism classes of them.
In algebraic geometry, one often encounters the following problem: given a scheme X, find a proper birational morphism from Y to X where the geometry of Y is nicer than that of X. One version of this problem, first studied by Faltings, requires Y to be Cohen-Macaulay; in this case Y is called a Macaulayfication of X. In another variant, one requires Y to satisfy the Serre condition S_r. In this paper, the authors introduce generalized Serre conditions--these are local cohomology conditions which include S_r and the Cohen-Macaulay condition as special cases. To any generalized Serre condition S_rho, there exists an associated perverse t-structure on the derived category of coherent sheaves on a suitable scheme X. Under appropriate hypotheses, the authors characterize those schemes for which a canonical finite S_rho-ification exists in terms of the intermediate extension functor for the associated perversity. Similar results, including a universal property, are obtained for a more general morphism extension problem called S_rho-extension.
Given a rational homogeneous variety G/P where G is complex simple and of type ADE, we prove that all tangent bundles T_{G/P} are simple, meaning that their only endomorphisms are scalar multiples of the identity. This result combined with Hitchin-Kobayashi correspondence implies stability of these tangent bundles with respect to the anticanonical polarization. Our main tool is the equivalence of categories between homogeneous vector bundles on G/P and finite dimensional representations of a given quiver with relations.
Following the approach in the book Commutative Algebra, by D. Eisenbud, where the author describes the generic initial ideal by means of a suitable total order on the terms of an exterior power, we introduce first the generic initial extensor of a subset of a Grassmannian and then the double-generic initial ideal of a so-called GL-stable subset of a Hilbert scheme. We discuss the features of these new notions and introduce also a partial order which gives another useful description of them. The double-generic initial ideals turn out to be the appropriate points to understand some geometric properties of a Hilbert scheme: they provide a necessary condition for a Borel ideal to correspond to a point of a given irreducible component, lower bounds for the number of irreducible components in a Hilbert scheme and the maximal Hilbert function in every irreducible component. Moreover, we prove that every isolated component having a smooth double-generic initial ideal is rational. As a byproduct, we prove that the Cohen-Macaulay locus of the Hilbert scheme parameterizing subschemes of codimension 2 is the union of open subsets isomorphic to affine spaces. This improves results by J. Fogarty (1968) and R. Treger (1989).
We present a nearby cycle sheaf construction in the context of symmetric spaces. This construction can be regarded as a replacement for the Grothendieck-Springer resolution in classical Springer theory.