Do you want to publish a course? Click here

On simplicity and stability of tangent bundles of rational homogeneous varieties

232   0   0.0 ( 0 )
 Added by Ada Boralevi
 Publication date 2009
  fields
and research's language is English
 Authors Ada Boralevi




Ask ChatGPT about the research

Given a rational homogeneous variety G/P where G is complex simple and of type ADE, we prove that all tangent bundles T_{G/P} are simple, meaning that their only endomorphisms are scalar multiples of the identity. This result combined with Hitchin-Kobayashi correspondence implies stability of these tangent bundles with respect to the anticanonical polarization. Our main tool is the equivalence of categories between homogeneous vector bundles on G/P and finite dimensional representations of a given quiver with relations.



rate research

Read More

168 - Rong Du , Xinyi Fang , Yun Gao 2020
We consider a uniform $r$-bundle $E$ on a complex rational homogeneous space $X$ %over complex number field $mathbb{C}$ and show that if $E$ is poly-uniform with respect to all the special families of lines and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ is either a direct sum of line bundles or $delta_i$-unstable for some $delta_i$. So we partially answer a problem posted by Mu~{n}oz-Occhetta-Sol{a} Conde. In particular, if $X$ is a generalized Grassmannian $mathcal{G}$ and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ splits as a direct sum of line bundles. We improve the main theorem of Mu~{n}oz-Occhetta-Sol{a} Conde when $X$ is a generalized Grassmannian by considering the Chow rings. Moreover, by calculating the relative tangent bundles between two rational homogeneous spaces, we give explicit bounds for the generalized Grauert-M{u}lich-Barth theorem on rational homogeneous spaces.
In this paper we study the existence of sections of universal bundles on rational homogeneous varieties -- called nestings -- classifying them completely in the case in which the Lie algebra of the automorphism group of the variety is simple of classical type. In particular we show that, under this hypothesis, nestings do not exist unless there exists a proper algebraic subgroup of the automorphism group acting transitively on the base variety.
152 - Zhi Jiang 2021
In this paper, we study syzygies of rational homogeneous varieties. We extend Manivels result that a $p$-th power of an ample line bundle on a flag variety satisfies Propery $(N_p)$ to many rational homogeneous varieties of type $B$, $C$, $D$, and $G_2$.
194 - Shijie Shang 2021
We prove that the kernel bundle of the evaluation morphism of global sections, namely the syzygy bundle, of a sufficiently ample line bundle on a smooth projective variety is slope stable with respect to any polarization. This settles a conjecture of Ein-Lazarsfeld-Mustopa.
Complete intersections inside rational homogeneous varieties provide interesting examples of Fano manifolds. For example, if $X = cap_{i=1}^r D_i subset G/P$ is a general complete intersection of $r$ ample divisors such that $K_{G/P}^* otimes mathcal{O}_{G/P}(-sum_i D_i)$ is ample, then $X$ is Fano. We first classify these Fano complete intersections which are locally rigid. It turns out that most of them are hyperplane sections. We then classify general hyperplane sections which are quasi-homogeneous.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا