No Arabic abstract
By studying 7 objects in the Lupus clouds we aim to test if a coherence exists between commonly used evolutionary tracers. We present ALMA observations of the continuum and molecular line emission that probe the dense gas and dust of cores and their associated molecular outflows. Our source selection in a common environment allows for a consistent comparison across different evolutionary stages. The quality of the ALMA molecular data allows us to reveal the nature of the molecular outflows by studying their morphology and kinematics. The images in IRAS15398-3359 appear to show that it drives a precessing episodic jet-driven outflow with at least 4 ejections separated by periods of time between 50 and 80 years, while data in IRAS16059-3857 show similarities with a wide-angle wind model also showing signs of being episodic. The outflow of J160115-41523 could be better explain with the wide-angle wind model as well, but new observations are needed to explore its nature. We find that the most common evolutionary tracers are useful for broad evolutionary classifications, but are not consistent with each other to provide enough granularity to disentangle different evolutionary stage of sources that belong to the same Class. Outflow properties used as protostellar age tracers (mass, momentum, energy, opening angle) may suffer from differences in the nature of each outflow, thus detailed observations are needed to refine evolutionary classifications. We found both AzTEC-lup1-2 and AzTEC-lup3-5 to be in the pre-stellar stage, although the latter could be more evolved. IRAS15398-3359, IRAS16059-3857 and J160115-41523, which have clearly detected outflows, are Class 0 sources, although we are not able to determine which is younger and which is older. Sz102 and Merin28 are the most evolved sources and show signs of having associated flows, not as well traced by CO as for the younger sources.
Previous star formation studies have, out of necessity, often defined a population of young stars confined to the proximity of a molecular cloud. Gaia allows us to examine a wider, three-dimensional structure of nearby star forming regions, leading to a new understanding of their history. We present a wide-area survey covering 494 square degrees of the Lupus complex, a prototypical low-mass star forming region. Our survey includes all known molecular clouds in this region as well as parts of the Upper Scorpius (US) and Upper Centaurus Lupus (UCL) groups of the Sco-Cen complex. We combine Gaia DR2 proper motions and parallaxes as well as ALLWISE mid-infrared photometry to select young stellar objects (YSOs) with disks. The YSO ages are inferred from Gaia color-magnitude diagrams, and their evolutionary stages from the slope of the spectral energy distributions. We find 98 new disk-bearing sources. Our new sample includes objects with ages ranging from 1 to 15 Myr and masses ranging from 0.05 to 0.5 solar masses , and consists of 56 sources with thick disks and 42 sources with anemic disks. While the youngest members are concentrated in the clouds and at distances of 160 pc, there is a distributed population of slightly older stars that overlap in proper motion, spatial distribution, distance, and age with the Lupus and UCL groups. The spatial and kinematic properties of the new disk-bearing YSOs indicate that Lupus and UCL are not distinct groups. Our new sample comprises some of the nearest disks to Earth at these ages, and thus provides an important target for follow-up studies of disks and accretion in very low mass stars, for example with ALMA and ESO-VLT X-Shooter.
Using the new equipment of the Shanghai Tian Ma Radio Telescope, we have searched for carbon-chain molecules (CCMs) towards five outflow sources and six Lupus I starless dust cores, including one region known to be characterized by warm carbon-chain chemistry (WCCC), Lupus I-1 (IRAS 15398-3359), and one TMC-1 like cloud, Lupus I-6 (Lupus-1A). Lines of HC3N J=2-1, HC5N J=6-5, HC7N J=14-13, 15-14, 16-15 and C3S J=3-2 were detected in all the targets except in the outflow source L1660 and the starless dust core Lupus I-3/4. The column densities of nitrogen-bearing species range from 10$^{12}$ to 10$^{14}$ cm$^{-2}$ and those of C$_3$S are about 10$^{12}$ cm$^{-2}$. Two outflow sources, I20582+7724 and L1221, could be identified as new carbon-chain--producing regions. Four of the Lupus I dust cores are newly identified as early quiescent and dark carbon-chain--producing regions similar to Lup I-6, which together with the WCCC source, Lup I-1, indicate that carbon-chain-producing regions are popular in Lupus I which can be regard as a Taurus like molecular cloud complex in our Galaxy. The column densities of C3S are larger than those of HC7N in the three outflow sources I20582, L1221 and L1251A. Shocked carbon-chain chemistry (SCCC) is proposed to explain the abnormal high abundances of C3S compared with those of nitrogen-bearing CCMs. Gas-grain chemical models support the idea that shocks can fuel the environment of those sources with enough $S^+$ thus driving the generation of S-bearing CCMs.
NGC7538 IRS1 is considered the best high-mass accretion disk candidate around an O-type young star in the northern hemisphere. We investigated the 3D kinematics and dynamics of circumstellar gas with very high linear resolution, from tens to 1500 AU, with the ultimate goal of building a comprehensive dynamical model for this YSO. We employed four different observing epochs of EVN data at 6.7 GHz, spanning almost eight years, which enabled us to measure, besides line-of-sight (l.o.s.) velocities and positions, also l.o.s. accelerations and proper motions of methanol masers. In addition, we imaged with the JVLA-B array highly-excited ammonia inversion lines, from (6,6) to (13,13), which enabled us to probe the hottest molecular gas very close to the exciting source(s). We found five 6.7 GHz maser clusters which are distributed over a region extended N-S across ~1500 AU and are associated with three peaks of the radio continuum. We proposed that these maser clusters identify three individual high-mass YSOs, named IRS1a, IRS1b, and IRS1c. We modeled the maser clusters in IRS1a and IRS1b in terms of edge-on disks in centrifugal equilibrium. In the first case, masers may trace a quasi-Keplerian thin disk, orbiting around a high-mass YSO, IRS1a, of up to 25 solar masses. This YSO dominates the bolometric luminosity of the region. The second disk is both massive (<16 Msun within ~500 AU) and thick, and the mass of the central YSO, IRS1b, is constrained to be at most a few solar masses. In summary, we present compelling evidence that NGC7538 IRS1 is not forming just one single high-mass YSO, but consists of a multiple system of high-mass YSOs, which are surrounded by accretion disks, and are probably driving individual outflows. This new model naturally explains all the different orientations and disk/outflow structures proposed for the region in previous models.
A large fraction of observed protoplanetary disks in nearby Star-Forming Regions (SFRs) are fainter than expected in CO isotopologue emission. Disks not detected in 13CO line emission are also faint and often unresolved in the continuum emission at an angular resolution of around 0.2 arcseconds. Focusing on the Lupus SFR, the aim of this work is to investigate whether the population of CO-faint disks comprises radially extended and low mass disks - as commonly assumed so far - or if it is of intrinsically radially compact disks, an interpretation that we propose in this paper. The latter scenario was already proposed for individual sources or small samples of disks, while this work targets a large population of disks in a single SFR for which statistical arguments can be made. A new grid of physical-chemical models of compact disks has been run with DALI in order to cover a region of the parameter space that had not been explored before with this code. Such models have been compared with 12CO and 13CO ALMA observations of faint disks in Lupus. Disks that are not detected in 13CO emission and with faint or undetected 12CO emission are consistent with compact disk models. For radially compact disk, the emission of CO isotopologues is mostly optically thick and it scales with the surface area: i.e., it is fainter for smaller objects. The fraction of compact disks is potentially between roughly 50% and 60% of the entire Lupus sample. Deeper observations of 12CO and 13CO at a moderate angular resolution will allow us to distinguish whether faint disks are intrinsically compact, or if they are extended but faint, without the need of resolving them. If the fainter end of the disk population observed by ALMA disk surveys is consistent with such objects being very compact, this will either create a tension with viscous spreading or require MHD winds or external processes to truncate the disks.
ALMA surveys have shown that CO emission in protoplanetary disks is much fainter than expected. Accordingly, CO-based gas masses and gas/dust ratios are orders of magnitude lower than previously thought. This may be explained either as fast gas dispersal, or as chemical evolution and locking up of volatiles in larger bodies leading to the low observed CO fluxes. The latter processes lead to enhanced C/O ratios in the gas, which may be reflected in enhanced abundances of molecules like C2H. The goal of this work is to employ C2H observations to understand whether low CO fluxes are caused by volatile depletion, or by fast gas dissipation. We present ALMA Cycle 4 C2H observations of a subsample of nine sources in Lupus. The integrated C2H emission is determined and compared to previous CO observations and model predictions. Seven out of nine disks are detected in C2H, whose line emission is almost as bright as 13CO. All detections are significantly brighter than the typical sensitivity of the observations, hinting at a bimodal distribution of the C2H line intensities. When compared with DALI models, the observed C2H fluxes can be reproduced only if some level of volatile carbon and oxygen depletion is allowed and C/O>1 in the gas. Models with reduced gas/dust ratios fail instead to reproduce the observations. A steeper than linear correlation between C2H and CN emission line is found. This is linked to the fact that C2H emission lines are affected more strongly by C/O variations than CN lines. Ring-like structures are detected both in C2H and in continuum emission but, as for CN, they do not seem to be connected. Sz 71 shows ring shaped emission in both C2H and CN with the location of the peak intensity coinciding. Our new ALMA C2H observations favour volatile carbon and oxygen depletion rather than fast gas dispersal to explain the faint CO observations for most of the disks.