Do you want to publish a course? Click here

New mass-loss rates of B supergiants from global wind models

75   0   0.0 ( 0 )
 Added by Jiri Krticka
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive stars lose a significant fraction of mass during their evolution. However, the corresponding mass-loss rates are rather uncertain. To improve this, we calculated global line-driven wind models for Galactic B supergiants. Our models predict radial wind structure directly from basic stellar parameters. The hydrodynamic structure of the flow is consistently determined from the photosphere in nearly hydrostatic equilibrium to supersonically expanding wind. The radiative force is derived from the solution of the radiative transfer equation in the comoving frame. We provide a simple formula that predicts theoretical mass-loss rates as a function of stellar luminosity and effective temperature. The mass-loss rate of B supergiants slightly decreases with temperature down to about 22.5 kK, where the region of recombination of Fe IV to Fe III starts to appear. In this region, which is about 5 kK wide, the mass-loss rate gradually increases by a factor of about 6. The increase of the mass-loss rate is associated with a gradual decrease of terminal velocities by a factor of about 2. We compared the predicted wind parameters with observations. While the observed wind terminal velocities are reasonably reproduced by the models, the situation with mass-loss rates is less clear. The mass-loss rates derived from observations that are uncorrected for clumping are by a factor of 3 to 9 higher than our predictions on cool and hot sides of the studied sample, respectively. These observations can be reconciled with theory assuming a temperature-dependent clumping factor. On the other hand, the mass-loss rate estimates that are not sensitive to clumping agree with our predictions much better. Our predictions are by a factor of about 10 lower than the values currently used in evolutionary models appealing for reconsideration of the role of winds in the stellar evolution.



rate research

Read More

223 - Jiri Krticka , Jiri Kubat 2017
We calculate global (unified) wind models of main-sequence, giant, and supergiant O stars from our Galaxy. The models are calculated by solving hydrodynamic, kinetic equilibrium (also known as NLTE) and comoving-frame (CMF) radiative transfer equations from the (nearly) hydrostatic photosphere to the supersonic wind. For given stellar parameters, our models predict the photosphere and wind structure and in particular the wind mass-loss rates without any free parameters. Our predicted mass-loss rates are by a factor of 2--5 lower than the commonly used predictions. A possible cause of the difference is abandoning of the Sobolev approximation for the calculation of the radiative force, because our models agree with predictions of CMF NLTE radiative transfer codes. Our predicted mass-loss rates agree nicely with the mass-loss rates derived from observed near-infrared and X-ray line profiles and are slightly lower than mass-loss rates derived from combined UV and H$alpha$ diagnostics. The empirical mass-loss rate estimates corrected for clumping may therefore be reconciled with theoretical predictions in such a way that the average ratio between individual mass-loss rate estimates is not higher than about $ 1.6 $. On the other hand, our predictions are by factor of $ 4.7 $ lower than pure H$alpha$ mass-loss rate estimates and can be reconciled with these values only assuming a microclumping factor of at least eight.
Recent observations of the high-mass X-ray binary Cygnus X-1 have shown that both the companion star (41 solar masses) and the black hole (21 solar masses) are more massive than previously estimated. Furthermore, the black hole appears to be nearly maximally spinning. Here we present a possible formation channel for the Cygnus X-1 system that matches the observed system properties. In this formation channel, we find that the orbital parameters of Cygnus X-1, combined with the observed metallicity of the companion, imply a significant reduction in mass loss through winds relative to commonly used prescriptions for stripped stars.
We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies. Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. New deep K-band photometry from the VMC survey and multi-epoch data from IRAC and AllWISE/NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 +- 1.6 msol, suggesting an initial mass well above 8~msol. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope.
90 - C. Hawcroft , H. Sana , L. Mahy 2021
We investigate the impact of optically thick clumping on stellar wind diagnostics in O supergiants and constrain wind parameters associated with porosity in velocity space. This is the first time the effects of optically thick clumping have been investigated for a sample of massive hot stars, using models including a full optically thick clumping description. We re-analyse spectroscopic observations of a sample of eight O supergiants. Using a genetic algorithm wrapper around the NLTE atmosphere code FASTWIND we obtain simultaneous fits to optical and UV spectra and determine photospheric and wind properties and surface abundances. We provide empirical constraints on a number of wind parameters including the clumping factors, mass-loss rates and terminal wind velocities. Additionally, we establish the first systematic empirical constraints on velocity filling factors and interclump densities. These parameters describe clump distribution in velocity-space and density of the interclump medium in physical-space, respectively. We observe a mass-loss rate reduction of a factor of 3.6 compared to theoretical predictions from Vink et al. (2000), and mass-loss rates within a factor 1.4 of predictions from Bjorklund et al. (2021). We confirm that including optically thick clumping allows simultaneous fitting of recombination lines and resonance lines, including the unsaturated UV phosphorus lines (Pv 1118-1128), without reducing the phosphorus abundance. We find that, on average, half of the wind velocity field is covered by dense clumps. We also find that these clumps are 25 times denser than the average wind, and that the interclump medium is 3-10 times less dense than the mean wind. The former result agrees well with theoretical predictions, the latter suggests that lateral filling-in of radially compressed gas might be critical for setting the scale of the rarefied interclump matter.
We have calculated mass-loss rates for a grid of wind models covering a wide range of stellar parameters and have derived a mass-loss recipe for two ranges of effective temperature at either side of the bi-stability jump around spectral type B1. For a large sample of O stars, it is shown that there is now good agreement between these new theoretical mass-loss rates that take multiple scattering into account and observations. Agreement between the observed and new theoretical wind momenta increases confidence in the possibility to derive distances to luminous stars in distant stellar systems using the Wind momentum Luminosity Relation. For the winds of the B stars there is an inconsistency in the literature between various mass-loss rate determinations from observations by different methods. One group of the determinations for B stars does follow the new theoretical relation, while another group does not. The lack of agreement between the observed mass-loss rates derived by different methods may point to systematic errors in mass-loss determinations from observations for B stars. We show that our theoretical mass-loss recipe is reliable and recommend it be used in evolutionary calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا