Do you want to publish a course? Click here

Symplectic excision

319   0   0.0 ( 0 )
 Added by Xiudi Tang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We say that a subset of a symplectic manifold is symplectically (neighbourhood) excisable if its complement is symplectomorphic to the ambient manifold, (through a symplectomorphism that can be chosen to be the identity outside an arbitrarily small neighbourhood of the subset). We use time-independent Hamiltonian flows, and their iterations, to show that certain properly embedded subsets of noncompact symplectic manifolds are symplectically neighbourhood excisable: a ray, a Cantor brush, a box with a tail, and -- more generally -- epigraphs of lower semi-continuous functions; as well as a ray with two horns, and -- more generally -- open-rooted finite trees.



rate research

Read More

231 - Xiudi Tang 2018
We prove that any noncompact symplectic manifold which admits a properly embedded ray with a wide neighborhood is symplectomorphic to the complement of the ray by constructing an explicit symplectomorphism in the case of the standard Euclidean space. We use this excision trick to construct a nowhere vanishing Liouville vector fields on every cotangent bundle.
397 - Claude Viterbo 2014
Let $H(q,p)$ be a Hamiltonian on $T^*T^n$. We show that the sequence $H_{k}(q,p)=H(kq,p)$ converges for the $gamma$ topology defined by the author, to $bar{H}(p)$. This is extended to the case where only some of the variables are homogenized, that is the sequence $H(kx,y,q,p)$ where the limit is of the type ${bar H}(y,q,p)$ and thus yields an effective Hamiltonian. We give here the proof of the convergence, and the first properties of the homogenization operator, and give some immediate consequences for solutions of Hamilton-Jacobi equations, construction of quasi-states, etc. We also prove that the function $bar H$ coincides with Mathers $alpha$ function which gives a new proof of its symplectic invariance proved by P. Bernard. A previous version of this paper relied on the former On the capacity of Lagrangians in $T^*T^n$ which has been withdrawn. The present version of Symplectic Homogenization does not rely on it anymore.
93 - G. Bande , D. Kotschick 2004
We study the geometry of manifolds carrying symplectic pairs consisting of two closed 2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.
We give a method to resolve 4-dimensional symplectic orbifolds making use of techniques from complex geometry and gluing of symplectic forms. We provide some examples to which the resolution method applies.
We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0$-small Hamiltonian isotopy. Furthermore for generic such isotopies the number of intersection points equals at least the sum of the free Betti numbers of the Morse-Novikov homology of $beta$. We also give a short exposition of conformal symplectic geometry, aimed at readers who are familiar with (standard) symplectic or contact geometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا