Do you want to publish a course? Click here

Resolution of $4$-dimensional symplectic orbifolds

208   0   0.0 ( 0 )
 Added by Juan Rojo
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We give a method to resolve 4-dimensional symplectic orbifolds making use of techniques from complex geometry and gluing of symplectic forms. We provide some examples to which the resolution method applies.



rate research

Read More

We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of the primitive cohomologies of differential forms. We provide a general algorithm for computing the monodromies of the fibrations explicitly, which are needed to determine the primitive cohomologies. We also investigate a similar phenomenon coming from fibrations of a class of graph links, whose primitive cohomology provides information about the fibration structure.
318 - Yael Karshon , Xiudi Tang 2021
We say that a subset of a symplectic manifold is symplectically (neighbourhood) excisable if its complement is symplectomorphic to the ambient manifold, (through a symplectomorphism that can be chosen to be the identity outside an arbitrarily small neighbourhood of the subset). We use time-independent Hamiltonian flows, and their iterations, to show that certain properly embedded subsets of noncompact symplectic manifolds are symplectically neighbourhood excisable: a ray, a Cantor brush, a box with a tail, and -- more generally -- epigraphs of lower semi-continuous functions; as well as a ray with two horns, and -- more generally -- open-rooted finite trees.
93 - G. Bande , D. Kotschick 2004
We study the geometry of manifolds carrying symplectic pairs consisting of two closed 2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.
We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0$-small Hamiltonian isotopy. Furthermore for generic such isotopies the number of intersection points equals at least the sum of the free Betti numbers of the Morse-Novikov homology of $beta$. We also give a short exposition of conformal symplectic geometry, aimed at readers who are familiar with (standard) symplectic or contact geometry.
192 - Augustin Banyaga 2008
We generalize the hamiltonian topology on hamiltonian isotopies to an intrinsic symplectic topology on the space of symplectic isotopies. We use it to define the group $SSympeo(M,omega)$ of strong symplectic homeomorphisms, which generalizes the group $Hameo(M,omega)$ of hamiltonian homeomorphisms introduced by Oh and Muller. The group $SSympeo(M,omega)$ is arcwise connected, is contained in the identity component of $Sympeo(M,omega)$; it contains $Hameo(M,omega)$ as a normal subgroup and coincides with it when $M$ is simply connected. Finally its commutator subgroup $[SSympeo(M,omega),SSympeo(M,omega)]$ is contained in $Hameo(M,omega)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا