No Arabic abstract
The goal of motion tomography is to recover a description of a vector flow field using information on the trajectory of a sensing unit. In this paper, we develop a predictor corrector algorithm designed to recover vector flow fields from trajectory data with the use of occupation kernels developed by Rosenfeld et al.. Specifically, we use the occupation kernels as an adaptive basis; that is, the trajectories defining our occupation kernels are iteratively updated to improve the estimation on the next stage. Initial estimates are established, then under mild assumptions, such as relatively straight trajectories, convergence is proven using the Contraction Mapping Theorem. We then compare to the established method by Chang et al. by defining a set of error metrics. We found that for simulated data, which provides a ground truth, our method offers a marked improvement and that for a real-world example we have similar results to the established method.
We propose the application of occupation measure theory to the classical problem of transient stability analysis for power systems. This enables the computation of certified inner and outer approximations for the region of attraction of a nominal operating point. In order to determine whether a post-disturbance point requires corrective actions to ensure stability, one would then simply need to check the sign of a polynomial evaluated at that point. Thus, computationally expensive dynamical simulations are only required for post-disturbance points in the region between the inner and outer approximations. We focus on the nonlinear swing equations but voltage dynamics could also be included. The proposed approach is formulated as a hierarchy of semidefinite programs stemming from an infinite-dimensional linear program in a measure space, with a natural dual sum-of-squares perspective. On the theoretical side, this paper lays the groundwork for exploiting the oscillatory structure of power systems by using Hermitian (instead of real) sums-of-squares and connects the proposed approach to recent results from algebraic geometry.
We provide an approach to maximal monotone bifunctions based on the theory of representative functions. Thus we extend to nonreflexive Banach spaces recent results due to A.N. Iusem and, respectively, N. Hadjisavvas and H. Khatibzadeh, where sufficient conditions guaranteeing the maximal monotonicity of bifunctions were introduced. New results involving the sum of two monotone bifunctions are also presented.
In the present paper we develop the theory of minimization for energies with multivariate kernels, i.e. energies, in which pairwise interactions are replaced by interactions between triples or, more generally, $n$-tuples of particles. Such objects, which arise naturally in various fields, present subtle differences and complications when compared to the classical two-input case. We introduce appropriate analogues of conditionally positive definite kernels, establish a series of relevant results in potential theory, explore rotationally invariant energies on the sphere, and present a variety of interesting examples, in particular, some optimization problems in probabilistic geometry which are related to multivaria
In this paper we answer the following question: what is the infinitesimal generator of the diffusion process defined by a kernel that is normalized such that it is bi-stochastic with respect to a specified measure? More precisely, under the assumption that data is sampled from a Riemannian manifold we determine how the resulting infinitesimal generator depends on the potentially nonuniform distribution of the sample points, and the specified measure for the bi-stochastic normalization. In a special case, we demonstrate a connection to the heat kernel. We consider both the case where only a single data set is given, and the case where a data set and a reference set are given. The spectral theory of the constructed operators is studied, and Nystrom extension formulas for the gradients of the eigenfunctions are computed. Applications to discrete point sets and manifold learning are discussed.
In this effort, a novel operator theoretic framework is developed for data-driven solution of optimal control problems. The developed methods focus on the use of trajectories (i.e., time-series) as the fundamental unit of data for the resolution of optimal control problems in dynamical systems. Trajectory information in the dynamical systems is embedded in a reproducing kernel Hilbert space (RKHS) through what are called occupation kernels. The occupation kernels are tied to the dynamics of the system through the densely defined Liouville operator. The pairing of Liouville operators and occupation kernels allows for lifting of nonlinear finite-dimensional optimal control problems into the space of infinite-dimensional linear programs over RKHSs.