No Arabic abstract
Common domain adaptation techniques assume that the source domain and the target domain share an identical label space, which is problematic since when target samples are unlabeled we have no knowledge on whether the two domains share the same label space. When this is not the case, the existing methods fail to perform well because the additional unknown classes are also matched with the source domain during adaptation. In this paper, we tackle the open set domain adaptation problem under the assumption that the source and the target label spaces only partially overlap, and the task becomes when the unknown classes exist, how to detect the target unknown classes and avoid aligning them with the source domain. We propose to utilize an instance-level reweighting strategy for domain adaptation where the weights indicate the likelihood of a sample belonging to known classes and to model the tail of the entropy distribution with Extreme Value Theory for unknown class detection. Experiments on conventional domain adaptation datasets show that the proposed method outperforms the state-of-the-art models.
Numerous algorithms have been proposed for transferring knowledge from a label-rich domain (source) to a label-scarce domain (target). Almost all of them are proposed for a closed-set scenario, where the source and the target domain completely share the class of their samples. We call the shared class the doublequote{known class.} However, in practice, when samples in target domain are not labeled, we cannot know whether the domains share the class. A target domain can contain samples of classes that are not shared by the source domain. We call such classes the doublequote{unknown class} and algorithms that work well in the open set situation are very practical. However, most existing distribution matching methods for domain adaptation do not work well in this setting because unknown target samples should not be aligned with the source. In this paper, we propose a method for an open set domain adaptation scenario which utilizes adversarial training. A classifier is trained to make a boundary between the source and the target samples whereas a generator is trained to make target samples far from the boundary. Thus, we assign two options to the feature generator: aligning them with source known samples or rejecting them as unknown target samples. This approach allows extracting features that separate unknown target samples from known target samples. Our method was extensively evaluated in domain adaptation setting and outperformed other methods with a large margin in most settings.
In the unsupervised open set domain adaptation (UOSDA), the target domain contains unknown classes that are not observed in the source domain. Researchers in this area aim to train a classifier to accurately: 1) recognize unknown target data (data with unknown classes) and, 2) classify other target data. To achieve this aim, a previous study has proven an upper bound of the target-domain risk, and the open set difference, as an important term in the upper bound, is used to measure the risk on unknown target data. By minimizing the upper bound, a shallow classifier can be trained to achieve the aim. However, if the classifier is very flexible (e.g., deep neural networks (DNNs)), the open set difference will converge to a negative value when minimizing the upper bound, which causes an issue where most target data are recognized as unknown data. To address this issue, we propose a new upper bound of target-domain risk for UOSDA, which includes four terms: source-domain risk, $epsilon$-open set difference ($Delta_epsilon$), a distributional discrepancy between domains, and a constant. Compared to the open set difference, $Delta_epsilon$ is more robust against the issue when it is being minimized, and thus we are able to use very flexible classifiers (i.e., DNNs). Then, we propose a new principle-guided deep UOSDA method that trains DNNs via minimizing the new upper bound. Specifically, source-domain risk and $Delta_epsilon$ are minimized by gradient descent, and the distributional discrepancy is minimized via a novel open-set conditional adversarial training strategy. Finally, compared to existing shallow and deep UOSDA methods, our method shows the state-of-the-art performance on several benchmark datasets, including digit recognition (MNIST, SVHN, USPS), object recognition (Office-31, Office-Home), and face recognition (PIE).
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distances across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address the domain shift problem. In this paper, we approach the problem from a transductive perspective. We incorporate the domain shift and the transductive target inference into our framework by jointly solving for an asymmetric similarity metric and the optimal transductive target label assignment. We also show that our model can easily be extended for deep feature learning in order to learn features which are discriminative in the target domain. Our experiments show that the proposed method significantly outperforms state-of-the-art algorithms in both object recognition and digit classification experiments by a large margin.
We study the use of randomized value functions to guide deep exploration in reinforcement learning. This offers an elegant means for synthesizing statistically and computationally efficient exploration with common practical approaches to value function learning. We present several reinforcement learning algorithms that leverage randomized value functions and demonstrate their efficacy through computational studies. We also prove a regret bound that establishes statistical efficiency with a tabular representation.