Do you want to publish a course? Click here

Bridging the Theoretical Bound and Deep Algorithms for Open Set Domain Adaptation

84   0   0.0 ( 0 )
 Added by Feng Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the unsupervised open set domain adaptation (UOSDA), the target domain contains unknown classes that are not observed in the source domain. Researchers in this area aim to train a classifier to accurately: 1) recognize unknown target data (data with unknown classes) and, 2) classify other target data. To achieve this aim, a previous study has proven an upper bound of the target-domain risk, and the open set difference, as an important term in the upper bound, is used to measure the risk on unknown target data. By minimizing the upper bound, a shallow classifier can be trained to achieve the aim. However, if the classifier is very flexible (e.g., deep neural networks (DNNs)), the open set difference will converge to a negative value when minimizing the upper bound, which causes an issue where most target data are recognized as unknown data. To address this issue, we propose a new upper bound of target-domain risk for UOSDA, which includes four terms: source-domain risk, $epsilon$-open set difference ($Delta_epsilon$), a distributional discrepancy between domains, and a constant. Compared to the open set difference, $Delta_epsilon$ is more robust against the issue when it is being minimized, and thus we are able to use very flexible classifiers (i.e., DNNs). Then, we propose a new principle-guided deep UOSDA method that trains DNNs via minimizing the new upper bound. Specifically, source-domain risk and $Delta_epsilon$ are minimized by gradient descent, and the distributional discrepancy is minimized via a novel open-set conditional adversarial training strategy. Finally, compared to existing shallow and deep UOSDA methods, our method shows the state-of-the-art performance on several benchmark datasets, including digit recognition (MNIST, SVHN, USPS), object recognition (Office-31, Office-Home), and face recognition (PIE).



rate research

Read More

Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution discrepancy across different domains. Due to the fact that all the domain alignment approaches can only reduce, but not remove the domain shift. Target domain samples distributed near the edge of the clusters, or far from their corresponding class centers are easily to be misclassified by the hyperplane learned from the source domain. To alleviate this issue, we propose to joint domain alignment and discriminative feature learning, which could benefit both domain alignment and final classification. Specifically, an instance-based discriminative feature learning method and a center-based discriminative feature learning method are proposed, both of which guarantee the domain invariant features with better intra-class compactness and inter-class separability. Extensive experiments show that learning the discriminative features in the shared feature space can significantly boost the performance of deep domain adaptation methods.
This paper addresses the problem of unsupervised domain adaption from theoretical and algorithmic perspectives. Existing domain adaptation theories naturally imply minimax optimization algorithms, which connect well with the domain adaptation methods based on adversarial learning. However, several disconnections still exist and form the gap between theory and algorithm. We extend previous theories (Mansour et al., 2009c; Ben-David et al., 2010) to multiclass classification in domain adaptation, where classifiers based on the scoring functions and margin loss are standard choices in algorithm design. We introduce Margin Disparity Discrepancy, a novel measurement with rigorous generalization bounds, tailored to the distribution comparison with the asymmetric margin loss, and to the minimax optimization for easier training. Our theory can be seamlessly transformed into an adversarial learning algorithm for domain adaptation, successfully bridging the gap between theory and algorithm. A series of empirical studies show that our algorithm achieves the state of the art accuracies on challenging domain adaptation tasks.
Retail food packaging contains information which informs choice and can be vital to consumer health, including product name, ingredients list, nutritional information, allergens, preparation guidelines, pack weight, storage and shelf life information (use-by / best before dates). The presence and accuracy of such information is critical to ensure a detailed understanding of the product and to reduce the potential for health risks. Consequently, erroneous or illegible labeling has the potential to be highly detrimental to consumers and many other stakeholders in the supply chain. In this paper, a multi-source deep learning-based domain adaptation system is proposed and tested to identify and verify the presence and legibility of use-by date information from food packaging photos taken as part of the validation process as the products pass along the food production line. This was achieved by improving the generalization of the techniques via making use of multi-source datasets in order to extract domain-invariant representations for all domains and aligning distribution of all pairs of source and target domains in a common feature space, along with the class boundaries. The proposed system performed very well in the conducted experiments, for automating the verification process and reducing labeling errors that could otherwise threaten public health and contravene legal requirements for food packaging information and accuracy. Comprehensive experiments on our food packaging datasets demonstrate that the proposed multi-source deep domain adaptation method significantly improves the classification accuracy and therefore has great potential for application and beneficial impact in food manufacturing control systems.
Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain. Most of DA methods focus on enhancing feature transferability through domain-invariance learning. However, source-learned discriminability itself might be tailored to be biased and unsafely transferable by spurious correlations, emph{i.e.}, part of source-specific features are correlated with category labels. We find that standard domain-invariance learning suffers from such correlations and incorrectly transfers the source-specifics. To address this issue, we intervene in the learning of feature discriminability using unlabeled target data to guide it to get rid of the domain-specific part and be safely transferable. Concretely, we generate counterfactual features that distinguish the domain-specifics from domain-sharable part through a novel feature intervention strategy. To prevent the residence of domain-specifics, the feature discriminability is trained to be invariant to the mutations in the domain-specifics of counterfactual features. Experimenting on typical emph{one-to-one} unsupervised domain adaptation and challenging domain-agnostic adaptation tasks, the consistent performance improvements of our method over state-of-the-art approaches validate that the learned discriminative features are more safely transferable and generalize well to novel domains.
Numerous algorithms have been proposed for transferring knowledge from a label-rich domain (source) to a label-scarce domain (target). Almost all of them are proposed for a closed-set scenario, where the source and the target domain completely share the class of their samples. We call the shared class the doublequote{known class.} However, in practice, when samples in target domain are not labeled, we cannot know whether the domains share the class. A target domain can contain samples of classes that are not shared by the source domain. We call such classes the doublequote{unknown class} and algorithms that work well in the open set situation are very practical. However, most existing distribution matching methods for domain adaptation do not work well in this setting because unknown target samples should not be aligned with the source. In this paper, we propose a method for an open set domain adaptation scenario which utilizes adversarial training. A classifier is trained to make a boundary between the source and the target samples whereas a generator is trained to make target samples far from the boundary. Thus, we assign two options to the feature generator: aligning them with source known samples or rejecting them as unknown target samples. This approach allows extracting features that separate unknown target samples from known target samples. Our method was extensively evaluated in domain adaptation setting and outperformed other methods with a large margin in most settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا