No Arabic abstract
This article proposes a scheme for nitrogen-vacancy (NV) center magnetometry that combines the advantages of lock-in detection and pulse-type scheme. The optimal conditions, optimal sensitivity, and noise-suppression capability of the proposed method are compared with those of the conventional methods from both theoretical and simulation points of view. Through experimental measurements, a four-time improvement in sensitivity and 60-times improvement in minimum resolvable magnetic field (MRMF) was obtained. By using a confocal experiment setup, proposed scheme achieves a sensitivity of 3 nT/Hz1/2 and a MRMF of 100 pT.
Diamond nitrogen-vacancy (NV) center magnetometry has recently received considerable interest from researchers in the fields of applied physics and sensors. The purpose of this review is to analyze the principle, sensitivity, technical development potential, and application prospect of the diamond NV center magnetometry. This review briefly introduces the physical characteristics of NV centers, summarizes basic principles of the NV center magnetometer, analyzes the theoretical sensitivity, and discusses the impact of technical noise on the NV center magnetometer. Furthermore, the most critical technologies that affect the performance of the NV center magnetometer are described: diamond sample preparation, microwave manipulation, fluorescence collection, and laser excitation. The theoretical and technical crucial problems, potential solutions and research technical route are discussed. In addition, this review discusses the influence of technical noise under the conventional technical conditions and the actual sensitivity which is determined by the theoretical sensitivity and the technical noise. It is envisaged that the sensitivity that can be achieved through an optimized design is in the order of 10 fT/Hz^1/2. Finally, the roadmap of applications of the diamond NV center magnetometer are presented.
Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the door to practical applications of NV sensors for ZF magnetic sensing, such as ZF nuclear magnetic resonance, and investigation of magnetic fields in biological systems.
The current work proposes a method for pulsed-light polarization of nitrogen-vacancy (NV) center electron spin. To evaluate the influence of pulsed spin polarization, we establish a polarization evaluation index based on polarizability and polarization time. Master equation model are utilized to theoretically calculate the spin polarization dynamics under light excitation and the optimal polarization conditions for the conventional methods are obtained. A novel pulsed-light polarization method is proposed by changing the optical pumping rate in the master equation from a fixed value to a time variable and an optimal waveform for proposed method is demonstrated through the variational method, which can simultaneously achieve high polarizability and requires a short polarization time. Hence, the polarization evaluation index is improved by ~10%. Moreover, the proposed method is verified by a pulsed-laser experimental system based on an arbitrary waveform generator. The current report shall expand the application horizon of NV center based quantum sensing.
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolution with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.
Diamond nanocrystals containing Nitrogen-Vacancy (NV) color centers have been used in recent years as fluorescent probes for near-field and cellular imaging. In this work we report that an infrared (IR) pulsed excitation beam can quench the photoluminescence of NV color center in a diamond nanocrystal (size < 50 nm) with an extinction ratio as high as ~90%. We attribute this effect to the heating of the nanocrystal consecutive to multi-photon absorption by the diamond matrix. This quenching is reversible: the photoluminescence intensity goes back to its original value when the IR laser beam is turned off, with a typical response time of hundred picoseconds, allowing for a fast control of NV color center photoluminescence. We used this effect to achieve sub-diffraction limited imaging of fluorescent diamond nanocrystals on a coverglass. For that, as in Ground State Depletion super-resolution technique, we combined the green excitation laser beam with the control IR depleting one after shaping its intensity profile in a doughnut form, so that the emission comes only from the sub-wavelength size central part.