Do you want to publish a course? Click here

Modified discrete Laguerre polynomials for efficient computation of exponentially bounded Matsubara sums

96   0   0.0 ( 0 )
 Added by Guanpeng Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We develop a new type of orthogonal polynomial, the modified discrete Laguerre (MDL) polynomials, designed to accelerate the computation of bosonic Matsubara sums in statistical physics. The MDL polynomials lead to a rapidly convergent Gaussian quadrature scheme for Matsubara sums, and more generally for any sum $F(0)/2 + F(h) + F(2h) + cdots$ of exponentially decaying summands $F(nh) = f(nh)e^{-nhs}$ where $hs>0$. We demonstrate this technique for computation of finite-temperature Casimir forces arising from quantum field theory, where evaluation of the summand $F$ requires expensive electromagnetic simulations. A key advantage of our scheme, compared to previous methods, is that the convergence rate is nearly independent of the spacing $h$ (proportional to the thermodynamic temperature). We also prove convergence for any polynomially decaying $F$.



rate research

Read More

In this paper we propose a method for computing the Faddeeva function $w(z) := e^{-z^2}mathrm{erfc}(-i z)$ via truncated modified trapezoidal rule approximations to integrals on the real line. Our starting point is the method due to Matta and Reichel (Math. Comp. 25 (1971), pp. 339-344) and Hunter and Regan (Math. Comp. 26 (1972), pp. 339-541). Addressing shortcomings flagged by Weideman (SIAM. J. Numer. Anal. 31 (1994), pp. 1497-1518), we construct approximations which we prove are exponentially convergent as a function of $N+1$, the number of quadrature points, obtaining error bounds which show that accuracies of $2times 10^{-15}$ in the computation of $w(z)$ throughout the complex plane are achieved with $N = 11$, this confirmed by computations. These approximations, moreover, provably achieve small relative errors throughout the upper complex half-plane where $w(z)$ is non-zero. Numerical tests suggest that this new method is competitive, in accuracy and computation times, with existing methods for computing $w(z)$ for complex $z$.
Approximation of interacting kernels by sum of Gaussians (SOG) is frequently required in many applications of scientific and engineering computing in order to construct efficient algorithms for kernel summation or convolution problems. In this paper, we propose a kernel-independent SOG method by introducing the de la Vallee-Poussin sum and Chebyshev polynomials. The SOG works for general interacting kernels and the lower bound of Gaussian bandwidths is tunable and thus the Gaussians can be easily summed by fast Gaussian algorithms. The number of Gaussians can be further reduced via the model reduction based on the balanced truncation based on the square root method. Numerical results on the accuracy and model reduction efficiency show attractive performance of the proposed method.
77 - Choon-Lin Ho , Ryu Sasaki 2019
The discrete orthogonality relations hold for all the orthogonal polynomials obeying three term recurrence relations. We show that they also hold for multi-indexed Laguerre and Jacobi polynomials, which are new orthogonal polynomials obtained by deforming these classical orthogonal polynomials. The discrete orthogonality relations could be considered as more encompassing characterisation of orthogonal polynomials than the three term recurrence relations. As the multi-indexed orthogonal polynomials start at a positive degree $ell_{mathcal D}ge1$, the three term recurrence relations are broken. The extra $ell_{mathcal D}$ `lower degree polynomials, which are necessary for the discrete orthogonality relations, are identified. The corresponding Christoffel numbers are determined. The main results are obtained by the blow-up analysis of the second order differential operators governing the multi-indexed orthogonal polynomials around the zeros of these polynomials at a degree $mathcal{N}$. The discrete orthogonality relations are shown to hold for another group of `new orthogonal polynomials called Krein-Adler polynomials based on the Hermite, Laguerre and Jacobi polynomials.
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.
120 - Y. Chen , T.Y. Hou , 2021
In this paper, we present a multiscale framework for solving the Helmholtz equation in heterogeneous media without scale separation and in the high frequency regime where the wavenumber $k$ can be large. The main innovation is that our methods achieve a nearly exponential rate of convergence with respect to the computational degrees of freedom, using a coarse grid of mesh size $O(1/k)$ without suffering from the well-known pollution effect. The key idea is a coarse-fine scale decomposition of the solution space that adapts to the media property and wavenumber; this decomposition is inspired by the multiscale finite element method. We show that the coarse part is of low complexity in the sense that it can be approximated with a nearly exponential rate of convergence via local basis functions, while the fine part is local such that it can be computed efficiently using the local information of the right hand side. The combination of the two parts yields the overall nearly exponential rate of convergence. We demonstrate the effectiveness of our methods theoretically and numerically; an exponential rate of convergence is consistently observed and confirmed. In addition, we observe the robustness of our methods regarding the high contrast in the media numerically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا