Do you want to publish a course? Click here

Modeling compact binary signals and instrumental glitches in gravitational wave data

80   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transient non-gaussian noise in gravitational wave detectors, commonly referred to as glitches, pose challenges for inference of the astrophysical properties of detected signals when the two are coincident in time. Current analyses aim towards modeling and subtracting the glitches from the data using a flexible, morphology-independent model in terms of sine-gaussian wavelets before the signal source properties are inferred using templates for the compact binary signal. We present a new analysis of gravitational wave data that contain both a signal and glitches by simultaneously modeling the compact binary signal in terms of templates and the instrumental glitches using sine-gaussian wavelets. The model for the glitches is generic and can thus be applied to a wide range of glitch morphologies without any special tuning. The simultaneous modeling of the astrophysical signal with templates allows us to efficiently separate the signal from the glitches, as we demonstrate using simulated signals injected around real O2 glitches in the two LIGO detectors. We show that our new proposed analysis can separate overlapping glitches and signals, estimate the compact binary parameters, and provide ready-to-use glitch-subtracted data for downstream inference analyses.



rate research

Read More

Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a blind injection where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron star and black hole parameter space over the individual mass range 1 Msun - 25 Msun and the full range of spin parameters. The cases reported in this study provide a snap-shot of the status of parameter estimation in preparation for the operation of advanced detectors.
In this technical note, we study the possibility of using networks of ground-based detectors to directly measure gravitational-wave polarizations using signals from compact binary coalescences. We present a simple data analysis method to partially achieve this, assuming presence of a strong signal well-captured by a GR template.
Gravitational waves in general relativity contain two polarization degrees of freedom, commonly labeled plus and cross. Besides those two tensor modes, generic theories of gravity predict up to four additional polarization modes: two scalar and two vector. Detection of nontensorial modes in gravitational wave data would constitute a clean signature of physics beyond general relativity. Previous measurements have pointed to the unambiguous presence of tensor modes in gravitational waves, but the presence of additional generic nontensorial modes has not been directly tested. We propose a model-independent analysis capable of detecting and characterizing mixed tensor and nontensor components in transient gravitational wave signals, including those from compact binary coalescences. This infrastructure can constrain the presence of scalar or vector polarization modes on top of the tensor modes predicted by general relativity. Our analysis is morphology-independent (as it does not rely on a waveform templates), phase-coherent, and agnostic about the source sky location. We apply our analysis to data from GW190521 and simulated data and demonstrate that it is capable of placing upper limits on the strength of nontensorial modes when none are present, or characterizing their morphology in the case of a positive detection. Tests of the polarization content of a transient gravitational wave signal hinge on an extended detector network, wherein each detector observes a different linear combination of polarization modes. We therefore anticipate that our analysis will yield precise polarization constraints in the coming years, as the current ground-based detectors LIGO Hanford, LIGO Livingston, and Virgo are joined by KAGRA and LIGO India.
A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal models are available, such as for binary Neutron star systems, it is possible to make robust detection statements even when the noise is poorly understood. In contrast, searches for un-modeled transient signals are strongly impacted by the methods used to characterize the noise. Here we take a Bayesian approach and introduce a multi-component, variable dimension, parameterized noise model that explicitly accounts for non-stationarity and non-Gaussianity in data from interferometric gravitational wave detectors. Instrumental transients (glitches) and burst sources of gravitational waves are modeled using a Morlet-Gabor continuous wavelet frame. The number and placement of the wavelets is determined by a trans-dimensional Reversible Jump Markov Chain Monte Carlo algorithm. The Gaussian component of the noise and sharp line features in the noise spectrum are modeled using the BayesLine algorithm, which operates in concert with the wavelet model.
Rapidly spinning neutron stars are promising sources of persistent, continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, BinarySkyHough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50 - 300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of 3 - 45 days and projected semimajor axes of 2 - 40 light-seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا