Do you want to publish a course? Click here

A morphology-independent test of the mixed polarization content of gravitational wave signals from compact binary coalescences

208   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational waves in general relativity contain two polarization degrees of freedom, commonly labeled plus and cross. Besides those two tensor modes, generic theories of gravity predict up to four additional polarization modes: two scalar and two vector. Detection of nontensorial modes in gravitational wave data would constitute a clean signature of physics beyond general relativity. Previous measurements have pointed to the unambiguous presence of tensor modes in gravitational waves, but the presence of additional generic nontensorial modes has not been directly tested. We propose a model-independent analysis capable of detecting and characterizing mixed tensor and nontensor components in transient gravitational wave signals, including those from compact binary coalescences. This infrastructure can constrain the presence of scalar or vector polarization modes on top of the tensor modes predicted by general relativity. Our analysis is morphology-independent (as it does not rely on a waveform templates), phase-coherent, and agnostic about the source sky location. We apply our analysis to data from GW190521 and simulated data and demonstrate that it is capable of placing upper limits on the strength of nontensorial modes when none are present, or characterizing their morphology in the case of a positive detection. Tests of the polarization content of a transient gravitational wave signal hinge on an extended detector network, wherein each detector observes a different linear combination of polarization modes. We therefore anticipate that our analysis will yield precise polarization constraints in the coming years, as the current ground-based detectors LIGO Hanford, LIGO Livingston, and Virgo are joined by KAGRA and LIGO India.



rate research

Read More

Gravitational waves have only two polarization modes in General Relativity. However, there are six possible modes of polarization in metric theory of gravity in general. The tests of gravitational waves polarization can be tools for pursuing the nature of space-time structure. The observations of gravitational waves with a world-wide network of interferometric detectors such as Advanced LIGO, Advanced Virgo and KAGRA will make it possible to obtain the information of gravitational wave polarization from detector signals. We study the separability of the polarization modes for the inspiral gravitational waves from the compact binary coalescences systematically. Unlike other waveforms such as burst, the binary parameters need to be properly considered. We show that the three polarization modes of the gravitational waves would be separable with the global network of three detectors to some extent, depending on signal-to-noise ratio and the duration of the signal. We also show that with four detectors the three polarization modes would be more easily distinguished by breaking a degeneracy of the polarization modes and even the four polarization modes would be separable.
In this technical note, we study the possibility of using networks of ground-based detectors to directly measure gravitational-wave polarizations using signals from compact binary coalescences. We present a simple data analysis method to partially achieve this, assuming presence of a strong signal well-captured by a GR template.
We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complimentary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of a non-detection of a post-merger signal following a binary neutron star inspiral we show that we can place upper limits on the energy emitted.
The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $Omega_{rm GW} (f=25 text{Hz}) = 1.8_{-1.3}^{+2.7} times 10^{-9}$ with $90%$ confidence, compared with $Omega_{rm GW} (f=25 text{Hz}) = 1.1_{-0.7}^{+1.2} times 10^{-9}$ from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
Transient non-gaussian noise in gravitational wave detectors, commonly referred to as glitches, pose challenges for inference of the astrophysical properties of detected signals when the two are coincident in time. Current analyses aim towards modeling and subtracting the glitches from the data using a flexible, morphology-independent model in terms of sine-gaussian wavelets before the signal source properties are inferred using templates for the compact binary signal. We present a new analysis of gravitational wave data that contain both a signal and glitches by simultaneously modeling the compact binary signal in terms of templates and the instrumental glitches using sine-gaussian wavelets. The model for the glitches is generic and can thus be applied to a wide range of glitch morphologies without any special tuning. The simultaneous modeling of the astrophysical signal with templates allows us to efficiently separate the signal from the glitches, as we demonstrate using simulated signals injected around real O2 glitches in the two LIGO detectors. We show that our new proposed analysis can separate overlapping glitches and signals, estimate the compact binary parameters, and provide ready-to-use glitch-subtracted data for downstream inference analyses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا