Do you want to publish a course? Click here

A remark on the Strichartz inequality in one dimension

108   0   0.0 ( 0 )
 Added by Ryan Frier
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the extremal problem for the Strichartz inequality for the Schr{o}dinger equation on $mathbb{R}^2$. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus can be extended to be complex analytic. Consequently we provide a new proof to the characterization of the extremal functions: the only extremals are Gaussian functions, which was investigated previously by Foschi and Hundertmark-Zharnitsky.



rate research

Read More

This note introduces bilinear estimates intended as a step towards an $L^infty$-endpoint Kato-Ponce inequality. In particular, a bilinear version of the classical Gagliardo-Nirenberg interpolation inequalities for a product of functions is proved.
In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to the stochastic nature of the inequality, the relation between the exponents of intgrability is modified. This modification can be understood as a regularization by noise phenomenon. As a direct application, we derive Strichartz estimates for the white noise dispersion which enables us to address a conjecture from [3].
We study the hyperboloidal initial value problem for the one-dimensional wave equation perturbed by a smooth potential. We show that the evolution decomposes into a finite-dimensional spectral part and an infinite-dimensional radiation part. For the radiation part we prove a set of Strichartz estimates. As an application we study the long-time asymptotics of Yang-Mills fields on a wormhole spacetime.
We prove an a priori estimate of type sup*inf on Riemannian manifold of dimension 3 (not necessarily compact).
195 - Louis Dupaigne 2020
In this note we present a new proof of Sobolevs inequality under a uniform lower bound of the Ricci curvature. This result was initially obtained in 1983 by Ilias. Our goal is to present a very short proof, to give a review of the famous inequality and to explain how our method, relying on a gradient-flow interpretation, is simple and robust. In particular, we elucidate computations used in numerous previous works, starting with Bidaut-V{e}ron and V{e}rons 1991 classical work.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا