Do you want to publish a course? Click here

A remark on an endpoint Kato-Ponce inequality

176   0   0.0 ( 0 )
 Added by Virginia Naibo
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

This note introduces bilinear estimates intended as a step towards an $L^infty$-endpoint Kato-Ponce inequality. In particular, a bilinear version of the classical Gagliardo-Nirenberg interpolation inequalities for a product of functions is proved.



rate research

Read More

107 - Ryan Frier , Shuanglin Shao 2021
In this paper, we study the extremal problem for the Strichartz inequality for the Schr{o}dinger equation on $mathbb{R}^2$. We show that the solutions to the associated Euler-Lagrange equation are exponentially decaying in the Fourier space and thus can be extended to be complex analytic. Consequently we provide a new proof to the characterization of the extremal functions: the only extremals are Gaussian functions, which was investigated previously by Foschi and Hundertmark-Zharnitsky.
106 - Guozhen Lu , Qiaohua Yang 2015
Wang and Ye conjectured in [22]: Let $Omega$ be a regular, bounded and convex domain in $mathbb{R}^{2}$. There exists a finite constant $C({Omega})>0$ such that [ int_{Omega}e^{frac{4pi u^{2}}{H_{d}(u)}}dxdyle C(Omega),;;forall uin C^{infty}_{0}(Omega), ] where $H_{d}=int_{Omega}| abla u|^{2}dxdy-frac{1}{4}int_{Omega}frac{u^{2}}{d(z,partialOmega)^{2}}dxdy$ and $d(z,partialOmega)=minlimits_{z_{1}inpartialOmega}|z-z_{1}|$.} The main purpose of this paper is to confirm that this conjecture indeed holds for any bounded and convex domain in $mathbb{R}^{2}$ via the Riemann mapping theorem (the smoothness of the boundary of the domain is thus irrelevant). We also give a rearrangement-free argument for the following Trudinger-Moser inequality on the hyperbolic space $mathbb{B}={z=x+iy:|z|=sqrt{x^{2}+y^{2}}<1}$: [ sup_{|u|_{mathcal{H}}leq 1} int_{mathbb{B}}(e^{4pi u^{2}}-1-4pi u^{2})dV=sup_{|u|_{mathcal{H}}leq 1}int_{mathbb{B}}frac{(e^{4pi u^{2}}-1-4pi u^{2})}{(1-|z|^{2})^{2}}dxdy< infty, ] by using the method employed earlier by Lam and the first author [9, 10], where $mathcal{H}$ denotes the closure of $C^{infty}_{0}(mathbb{B})$ with respect to the norm $$|u|_{mathcal{H}}=int_{mathbb{B}}| abla u|^{2}dxdy-int_{mathbb{B}}frac{u^{2}}{(1-|z|^{2})^{2}}dxdy.$$ Using this strengthened Trudinger-Moser inequality, we also give a simpler proof of the Hardy-Moser-Trudinger inequality obtained by Wang and Ye [22].
We prove a sharp, global-in-time Strichartz estimate for the Schrodinger equation on the cylinder $mathbb{R}timesmathbb{T}$.
We study local activity and its opposite, local passivity, for linear systems and show that generically an eigenvalue of the system matrix with positive real part implies local activity. If all state variables are port variables we prove that the system is locally active if and only if the system matrix is not dissipative. Local activity was suggested by Leon Chua as an indicator for the emergence of complexity of nonlinear systems. We propose an abstract scheme which indicates how local activity could be applied to nonlinear systems and list open questions about possible consequences for complexity.
Norm inflation implies certain discontinuous dependence of the solution on the initial value. The well-posedness of the mild solution means the existence and uniqueness of the fixed points of the corresponding integral equation. For ${rm BMO}^{-1}$, Auscher-Dubois-Tchamitchian proved that Koch-Tatarus solution is stable. In this paper, we construct a non-Gauss flow function to show that, for classic Navier-Stokes equations, wellposedness and norm inflation may have no conflict and stability may have meaning different to $L^{infty}(({rm BMO}^{-1})^{n})$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا