No Arabic abstract
Classification of cognitive workload promises immense benefit in diverse areas ranging from driver safety to augmenting human capability through closed loop brain computer interface. The brain is the most metabolically active organ in the body and increases its metabolic activity and thus oxygen consumption with increasing cognitive demand. In this study, we explore the feasibility of in-ear SpO2 cognitive workload tracking. To this end, we preform cognitive workload assessment in 8 subjects, based on an N-back task, whereby the subjects are asked to count and remember the number of odd numbers displayed on a screen in 5 second windows. The 2 and 3-back tasks lead to either the lowest median absolute SpO2 or largest median decrease in SpO2 in all of the subjects, indicating a robust and measurable decrease in blood oxygen in response to increased cognitive workload. Using features derived from in-ear pulse oximetry, including SpO2, pulse rate and respiration rate, we were able to classify the 4 N-back task categories, over 5 second epochs, with a mean accuracy of 94.2%. Moreover, out of 21 total features, the 9 most important features for classification accuracy were all SpO2 related features. The findings suggest that in-ear SpO2 measurements provide valuable information for classification of cognitive workload over short time windows, which together with the small form factor promises a new avenue for real time cognitive workload tracking.
Spectrum sensing is a key technology for cognitive radios. We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification. We normalize the received signal power to overcome the effects of noise power uncertainty. We train the model with as many types of signals as possible as well as noise data to enable the trained network model to adapt to untrained new signals. We also use transfer learning strategies to improve the performance for real-world signals. Extensive experiments are conducted to evaluate the performance of this method. The simulation results show that the proposed method performs better than two traditional spectrum sensing methods, i.e., maximum-minimum eigenvalue ratio-based method and frequency domain entropy-based method. In addition, the experimental results of the new untrained signal types show that our method can adapt to the detection of these new signals. Furthermore, the real-world signal detection experiment results show that the detection performance can be further improved by transfer learning. Finally, experiments under colored noise show that our proposed method has superior detection performance under colored noise, while the traditional methods have a significant performance degradation, which further validate the superiority of our method.
Data Visualization has been receiving growing attention recently, with ubiquitous smart devices designed to render information in a variety of ways. However, while evaluations of visual tools for their interpretability and intuitiveness have been commonplace, not much research has been devoted to other forms of data rendering, eg, sonification. This work is the first to automatically estimate the cognitive load induced by different acoustic parameters considered for sonification in prior studies. We examine cognitive load via (a) perceptual data-sound mapping accuracies of users for the different acoustic parameters, (b) cognitive workload impressions explicitly reported by users, and (c) their implicit EEG responses compiled during the mapping task. Our main findings are that (i) low cognitive load-inducing (ie, more intuitive) acoustic parameters correspond to higher mapping accuracies, (ii) EEG spectral power analysis reveals higher $alpha$ band power for low cognitive load parameters, implying a congruent relationship between explicit and implicit user responses, and (iii) Cognitive load classification with EEG features achieves a peak F1-score of 0.64, confirming that reliable workload estimation is achievable with user EEG data compiled using wearable sensors.
Electroencephalogram (EEG) is the recording which is the result due to the activity of bio-electrical signals that is acquired from electrodes placed on the scalp. In Electroencephalogram signal(EEG) recordings, the signals obtained are contaminated predominantly by the Electrooculogram(EOG) signal. Since this artifact has higher magnitude compared to EEG signals, these noise signals have to be removed in order to have a better understanding regarding the functioning of a human brain for applications such as medical diagnosis. This paper proposes an idea of using Independent Component Analysis(ICA) along with cross-correlation to de-noise EEG signal. This is done by selecting the component based on the cross-correlation coefficient with a threshold value and reducing its effect instead of zeroing it out completely, thus reducing the information loss. The results of the recorded data show that this algorithm can eliminate the EOG signal artifact with little loss in EEG data. The denoising is verified by an increase in SNR value and the decrease in cross-correlation coefficient value. The denoised signals are used to train an Artificial Neural Network(ANN) which would examine the features of the input EEG signal and predict the stress levels of the individual.
We present a practical approach to capturing ear-to-ear face models comprising both 3D meshes and intrinsic textures (i.e. diffuse and specular albedo). Our approach is a hybrid of geometric and photometric methods and requires no geometric calibration. Photometric measurements made in a lightstage are used to estimate view dependent high resolution normal maps. We overcome the problem of having a single photometric viewpoint by capturing in multiple poses. We use uncalibrated multiview stereo to estimate a coarse base mesh to which the photometric views are registered. We propose a novel approach to robustly stitching surface normal and intrinsic texture data into a seamless, complete and highly detailed face model. The resulting relightable models provide photorealistic renderings in any view.
Cognitive ad-hoc networks allow users to access an unlicensed/shared spectrum without the need for any coordination via a central controller and are being envisioned for futuristic ultra-dense wireless networks. The ad-hoc nature of networks require each user to learn and regularly update various network parameters such as channel quality and the number of users, and use learned information to improve the spectrum utilization and minimize collisions. For such a learning and coordination task, we propose a distributed algorithm based on a multi-player multi-armed bandit approach and novel signaling scheme. The proposed algorithm does not need prior knowledge of network parameters (users, channels) and its ability to detect as well as adapt to the changes in the network parameters thereby making it suitable for static as well as dynamic networks. The theoretical analysis and extensive simulation results validate the superiority of the proposed algorithm over existing state-of-the-art algorithms.