Do you want to publish a course? Click here

Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making

74   0   0.0 ( 0 )
 Added by Md Naimul Hoque
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The widespread adoption of algorithmic decision-making systems has brought about the necessity to interpret the reasoning behind these decisions. The majority of these systems are complex black box models, and auxiliary models are often used to approximate and then explain their behavior. However, recent research suggests that such explanations are not overly accessible to lay users with no specific expertise in machine learning and this can lead to an incorrect interpretation of the underlying model. In this paper, we show that a predictive and interactive model based on causality is inherently interpretable, does not require any auxiliary model, and allows both expert and non-expert users to understand the model comprehensively. To demonstrate our method we developed Outcome Explorer, a causality guided interactive interface, and evaluated it by conducting think-aloud sessions with three expert users and a user study with 18 non-expert users. All three expert users found our tool to be comprehensive in supporting their explanation needs while the non-expert users were able to understand the inner workings of a model easily.



rate research

Read More

Society increasingly relies on machine learning models for automated decision making. Yet, efficiency gains from automation have come paired with concern for algorithmic discrimination that can systematize inequality. Recent work has proposed optimal post-processing methods that randomize classification decisions for a fraction of individuals, in order to achieve fairness measures related to parity in errors and calibration. These methods, however, have raised concern due to the information inefficiency, intra-group unfairness, and Pareto sub-optimality they entail. The present work proposes an alternative active framework for fair classification, where, in deployment, a decision-maker adaptively acquires information according to the needs of different groups or individuals, towards balancing disparities in classification performance. We propose two such methods, where information collection is adapted to group- and individual-level needs respectively. We show on real-world datasets that these can achieve: 1) calibration and single error parity (e.g., equal opportunity); and 2) parity in both false positive and false negative rates (i.e., equal odds). Moreover, we show that by leveraging their additional degree of freedom, active approaches can substantially outperform randomization-based classifiers previously considered optimal, while avoiding limitations such as intra-group unfairness.
94 - Renzhe Xu , Peng Cui , Kun Kuang 2020
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.
Algorithmic decision-making systems are increasingly used throughout the public and private sectors to make important decisions or assist humans in making these decisions with real social consequences. While there has been substantial research in recent years to build fair decision-making algorithms, there has been less research seeking to understand the factors that affect peoples perceptions of fairness in these systems, which we argue is also important for their broader acceptance. In this research, we conduct an online experiment to better understand perceptions of fairness, focusing on three sets of factors: algorithm outcomes, algorithm development and deployment procedures, and individual differences. We find that people rate the algorithm as more fair when the algorithm predicts in their favor, even surpassing the negative effects of describing algorithms that are very biased against particular demographic groups. We find that this effect is moderated by several variables, including participants education level, gender, and several aspects of the development procedure. Our findings suggest that systems that evaluate algorithmic fairness through users feedback must consider the possibility of outcome favorability bias.
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among individuals who would be similarly affected by the decision. Unlike the existing statistical definitions of fairness, principal fairness explicitly accounts for the fact that individuals can be impacted by the decision. We propose an axiomatic assumption that all groups are created equal. This assumption is motivated by a belief that protected attributes such as race and gender should have no direct causal effects on potential outcomes. Under this assumption, we show that principal fairness implies all three existing statistical fairness criteria once we account for relevant covariates. This result also highlights the essential role of conditioning covariates in resolving the previously recognized tradeoffs between the existing statistical fairness criteria. Finally, we discuss how to empirically choose conditioning covariates and then evaluate the principal fairness of a particular decision.
The widespread use of deep neural networks has achieved substantial success in many tasks. However, there still exists a huge gap between the operating mechanism of deep learning models and human-understandable decision making, so that humans cannot fully trust the predictions made by these models. To date, little work has been done on how to align the behaviors of deep learning models with human perception in order to train a human-understandable model. To fill this gap, we propose a new framework to train a deep neural network by incorporating the prior of human perception into the model learning process. Our proposed model mimics the process of perceiving conceptual parts from images and assessing their relative contributions towards the final recognition. The effectiveness of our proposed model is evaluated on two classical visual recognition tasks. The experimental results and analysis confirm our model is able to provide interpretable explanations for its predictions, but also maintain competitive recognition accuracy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا