No Arabic abstract
The widespread use of deep neural networks has achieved substantial success in many tasks. However, there still exists a huge gap between the operating mechanism of deep learning models and human-understandable decision making, so that humans cannot fully trust the predictions made by these models. To date, little work has been done on how to align the behaviors of deep learning models with human perception in order to train a human-understandable model. To fill this gap, we propose a new framework to train a deep neural network by incorporating the prior of human perception into the model learning process. Our proposed model mimics the process of perceiving conceptual parts from images and assessing their relative contributions towards the final recognition. The effectiveness of our proposed model is evaluated on two classical visual recognition tasks. The experimental results and analysis confirm our model is able to provide interpretable explanations for its predictions, but also maintain competitive recognition accuracy.
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks in stochastic, complex environments. By modeling the agents behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals while deceiving outside observers about its true goal. We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies via linear programming. The proposed approach enables the agent to exhibit a variety of tunable deceptive behaviors while ensuring the satisfaction of probabilistic constraints on the behavior. We evaluate the performance of the proposed approach via comparative user studies and present a case study on the streets of Manhattan, New York, using real travel time distributions.
Actionable Cognitive Twins are the next generation Digital Twins enhanced with cognitive capabilities through a knowledge graph and artificial intelligence models that provide insights and decision-making options to the users. The knowledge graph describes the domain-specific knowledge regarding entities and interrelationships related to a manufacturing setting. It also contains information on possible decision-making options that can assist decision-makers, such as planners or logisticians. In this paper, we propose a knowledge graph modeling approach to construct actionable cognitive twins for capturing specific knowledge related to demand forecasting and production planning in a manufacturing plant. The knowledge graph provides semantic descriptions and contextualization of the production lines and processes, including data identification and simulation or artificial intelligence algorithms and forecasts used to support them. Such semantics provide ground for inferencing, relating different knowledge types: creative, deductive, definitional, and inductive. To develop the knowledge graph models for describing the use case completely, systems thinking approach is proposed to design and verify the ontology, develop a knowledge graph and build an actionable cognitive twin. Finally, we evaluate our approach in two use cases developed for a European original equipment manufacturer related to the automotive industry as part of the European Horizon 2020 project FACTLOG.
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among individuals who would be similarly affected by the decision. Unlike the existing statistical definitions of fairness, principal fairness explicitly accounts for the fact that individuals can be impacted by the decision. We propose an axiomatic assumption that all groups are created equal. This assumption is motivated by a belief that protected attributes such as race and gender should have no direct causal effects on potential outcomes. Under this assumption, we show that principal fairness implies all three existing statistical fairness criteria once we account for relevant covariates. This result also highlights the essential role of conditioning covariates in resolving the previously recognized tradeoffs between the existing statistical fairness criteria. Finally, we discuss how to empirically choose conditioning covariates and then evaluate the principal fairness of a particular decision.
Action selection from many options with few constraints is crucial for improvisation and co-creativity. Our previous work proposed creative arc negotiation to solve this problem, i.e., selecting actions to follow an author-defined `creative arc or trajectory over estimates of novelty, unexpectedness, and quality for potential actions. The CARNIVAL agent architecture demonstrated this approach for playing the Props game from improv theatre in the Robot Improv Circus installation. This article evaluates the creative arc negotiation experience with CARNIVAL through two crowdsourced observer studies and one improviser laboratory study. The studies focus on subjects ability to identify creative arcs in performance and their preference for creative arc negotiation compared to a random selection baseline. Our results show empirically that observers successfully identified creative arcs in performances. Both groups also preferred creative arc negotiation in agent creativity and logical coherence, while observers enjoyed it more too.
Although AI holds promise for improving human decision making in societally critical domains, it remains an open question how human-AI teams can reliably outperform AI alone and human alone in challenging prediction tasks (also known as complementary performance). We explore two directions to understand the gaps in achieving complementary performance. First, we argue that the typical experimental setup limits the potential of human-AI teams. To account for lower AI performance out-of-distribution than in-distribution because of distribution shift, we design experiments with different distribution types and investigate human performance for both in-distribution and out-of-distribution examples. Second, we develop novel interfaces to support interactive explanations so that humans can actively engage with AI assistance. Using virtual pilot studies and large-scale randomized experiments across three tasks, we demonstrate a clear difference between in-distribution and out-of-distribution, and observe mixed results for interactive explanations: while interactive explanations improve human perception of AI assistances usefulness, they may reinforce human biases and lead to limited performance improvement. Overall, our work points out critical challenges and future directions towards enhancing human performance with AI assistance.