Do you want to publish a course? Click here

Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning

111   0   0.0 ( 0 )
 Added by Kai Fukami
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Achieving accurate and robust global situational awareness of a complex time-evolving field from a limited number of sensors has been a longstanding challenge. This reconstruction problem is especially difficult when sensors are sparsely positioned in a seemingly random or unorganized manner, which is often encountered in a range of scientific and engineering problems. Moreover, these sensors can be in motion and can become online or offline over time. The key leverage in addressing this scientific issue is the wealth of data accumulated from the sensors. As a solution to this problem, we propose a data-driven spatial field recovery technique founded on a structured grid-based deep-learning approach for arbitrary positioned sensors of any numbers. It should be noted that the naive use of machine learning becomes prohibitively expensive for global field reconstruction and is furthermore not adaptable to an arbitrary number of sensors. In the present work, we consider the use of Voronoi tessellation to obtain a structured-grid representation from sensor locations enabling the computationally tractable use of convolutional neural networks. One of the central features of the present method is its compatibility with deep-learning based super-resolution reconstruction techniques for structured sensor data that are established for image processing. The proposed reconstruction technique is demonstrated for unsteady wake flow, geophysical data, and three-dimensional turbulence. The current framework is able to handle an arbitrary number of moving sensors, and thereby overcomes a major limitation with existing reconstruction methods. The presented technique opens a new pathway towards the practical use of neural networks for real-time global field estimation.



rate research

Read More

We present a new open source code for massive parallel computation of Voronoi tessellations(VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid.
In many applications it is important to estimate a fluid flow field from limited and possibly corrupt measurements. Current methods in flow estimation often use least squares regression to reconstruct the flow field, finding the minimum-energy solution that is consistent with the measured data. However, this approach may be prone to overfitting and sensitive to noise. To address these challenges we instead seek a sparse representation of the data in a library of examples. Sparse representation has been widely used for image recognition and reconstruction, and it is well-suited to structured data with limited, corrupt measurements. We explore sparse representation for flow reconstruction on a variety of fluid data sets with a wide range of complexity, including vortex shedding past a cylinder at low Reynolds number, a mixing layer, and two geophysical flows. In addition, we compare several measurement strategies and consider various types of noise and corruption over a range of intensities. We find that sparse representation has considerably improved estimation accuracy and robustness to noise and corruption compared with least squares methods. We also introduce a sparse estimation procedure on local spatial patches for complex multiscale flows that preclude a global sparse representation. Based on these results, sparse representation is a promising framework for extracting useful information from complex flow fields with realistic measurements.
Within the domain of Computational Fluid Dynamics, Direct Numerical Simulation (DNS) is used to obtain highly accurate numerical solutions for fluid flows. However, this approach for numerically solving the Navier-Stokes equations is extremely computationally expensive mostly due to the requirement of greatly refined grids. Large Eddy Simulation (LES) presents a more computationally efficient approach for solving fluid flows on lower-resolution (LR) grids but results in an overall reduction in solution fidelity. Through this paper, we introduce a novel deep learning framework SR-DNS Net, which aims to mitigate this inherent trade-off between solution fidelity and computational complexity by leveraging deep learning techniques used in image super-resolution. Using our model, we wish to learn the mapping from a coarser LR solution to a refined high-resolution (HR) DNS solution so as to eliminate the need for performing DNS on highly refined grids. Our model efficiently reconstructs the high-fidelity DNS data from the LES like low-resolution solutions while yielding good reconstruction metrics. Thus our implementation improves the solution accuracy of LR solutions while incurring only a marginal increase in computational cost required for deploying the trained deep learning model.
57 - Chengming He , Yicheng Chi , 2020
Torsional modes within a complex molecule containing various functional groups are often strongly coupled so that the harmonic approximation and one-dimensional torsional treatment are inaccurate to evaluate their partition functions. A family of multi-structural approximation methods have been proposed and applied in recent years to deal with the torsional anharmonicity.However, these methods approximate the exact almost periodic potential energy as a summation of local periodic functions with symmetric barrier positions and heights. In the present theoretical study, we illustrated that the approximation is inaccurate when torsional modes present non-uniformly distributed local minima. Thereby, we proposed an improved method to reconstruct approximate potential to replace the periodic potential by using information of the local minima and their Voronoi tessellation. First, we established asymmetric barrier heights by introducing two periodicity parameters and assuming that the exact barrier positions are at the boundaries of Voronoi cells. Second, we used multiplicatively weighted Voronoi tessellation to refine the barrier heights and positions by defining a structure-related distance metric. The proposed method has been tested for a few higher-dimensional cases, all of which show promising improved accuracy.
The shallow water equations (SWE) are a widely used model for the propagation of surface waves on the oceans. We consider the problem of optimally determining the initial conditions for the one-dimensional SWE in an unbounded domain from a small set of observations of the sea surface height. In the linear case we prove a theorem that gives sufficient conditions for convergence to the true initial conditions. At least two observation points must be used and at least one pair of observation points must be spaced more closely than half the effective minimum wavelength of the energy spectrum of the initial conditions. This result also applies to the linear wave equation. Our analysis is confirmed by numerical experiments for both the linear and nonlinear SWE data assimilation problems. These results show that convergence rates improve with increasing numbers of observation points and that at least three observation points are required for the practically useful results. Better results are obtained for the nonlinear equations provided more than two observation points are used. This paper is a first step in understanding the conditions for observability of the SWE for small numbers of observation points in more physically realistic settings.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا