No Arabic abstract
We present a new open source code for massive parallel computation of Voronoi tessellations(VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid.
We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N~10^7 particles. Our code is based on the the Henon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures, and the introduction of a parallel random number generation scheme, as well as a parallel sorting algorithm, required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. The implementation uses the Message Passing Interface (MPI) library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functions up to core collapse with the number of stars, N, spanning three orders of magnitude, from 10^5 to 10^7. We find that our results are in good agreement with self-similar core-collapse solutions, and the core collapse times generally agree with expectations from the literature. Also, we observe good total energy conservation, within less than 0.04% throughout all simulations. We analyze the performance of the code, and demonstrate near-linear scaling of the runtime with the number of processors up to 64 processors for N=10^5, 128 for N=10^6 and 256 for N=10^7. The runtime reaches a saturation with the addition of more processors beyond these limits which is a characteristic of the parallel sorting algorithm. The resulting maximum speedups we achieve are approximately 60x, 100x, and 220x, respectively.
Achieving accurate and robust global situational awareness of a complex time-evolving field from a limited number of sensors has been a longstanding challenge. This reconstruction problem is especially difficult when sensors are sparsely positioned in a seemingly random or unorganized manner, which is often encountered in a range of scientific and engineering problems. Moreover, these sensors can be in motion and can become online or offline over time. The key leverage in addressing this scientific issue is the wealth of data accumulated from the sensors. As a solution to this problem, we propose a data-driven spatial field recovery technique founded on a structured grid-based deep-learning approach for arbitrary positioned sensors of any numbers. It should be noted that the naive use of machine learning becomes prohibitively expensive for global field reconstruction and is furthermore not adaptable to an arbitrary number of sensors. In the present work, we consider the use of Voronoi tessellation to obtain a structured-grid representation from sensor locations enabling the computationally tractable use of convolutional neural networks. One of the central features of the present method is its compatibility with deep-learning based super-resolution reconstruction techniques for structured sensor data that are established for image processing. The proposed reconstruction technique is demonstrated for unsteady wake flow, geophysical data, and three-dimensional turbulence. The current framework is able to handle an arbitrary number of moving sensors, and thereby overcomes a major limitation with existing reconstruction methods. The presented technique opens a new pathway towards the practical use of neural networks for real-time global field estimation.
We have developed a new parallel tree method which will be called the forest method hereafter. This new method uses the sectional Voronoi tessellation (SVT) for the domain decomposition. The SVT decomposes a whole space into polyhedra and allows their flat borders to move by assigning different weights. The forest method determines these weights based on the load balancing among processors by means of the over-load diffusion (OLD). Moreover, since all the borders are flat, before receiving the data from other processors, each processor can collect enough data to calculate the gravity force with precision. Both the SVT and the OLD are coded in a highly vectorizable manner to accommodate on vector parallel processors. The parallel code based on the forest method with the Message Passing Interface is run on various platforms so that a wide portability is guaranteed. Extensive calculations with 15 processors of Fujitsu VPP300/16R indicate that the code can calculate the gravity force exerted on 10^5 particles in each second for some ideal dark halo. This code is found to enable an N-body simulation with 10^7 or more particles for a wide dynamic range and is therefore a very powerful tool for the study of galaxy formation and large-scale structure in the universe.
Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincare invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli (1993) generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a warm dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.
We provide a detailed description of the Chimera code, a code developed to model core collapse supernovae in multiple spatial dimensions. The core collapse supernova explosion mechanism remains the subject of intense research. Progress to date demonstrates that it involves a complex interplay of neutrino production, transport, and interaction in the stellar core, three-dimensional stellar core fluid dynamics and its associated instabilities, nuclear burning, and the foundational physics of the neutrino-stellar core weak interactions and the equations of state of all stellar core constituents -particularly, the nuclear equation of state associated with nucleons, both free and bound in nuclei. Chimera, by incorporating detailed neutrino transport, realistic neutrino-matter interactions, three-dimensional hydrodynamics, realistic nuclear, leptonic, and photonic equations of state, and a nuclear reaction network, along with other refinements, can be used to study the role of neutrino radiation, hydrodynamic instabilities, and a variety of input physics in the explosion mechanism itself. It can also be used to compute observables such as neutrino signatures, gravitational radiation, and the products of nucleosynthesis associated with core collapse supernovae. The code contains modules for neutrino transport, multidimensional compressible hydrodynamics, nuclear reactions, a variety of neutrino interactions, equations of state, and modules to provide data for post-processing observables such as the products of nucleosynthesis, and gravitational radiation. Chimera is an evolving code, being updated periodically with improved input physics and numerical refinements. We detail here the current version of the code, from which future improvements will stem, which can in turn be described as needed in future publications.