Do you want to publish a course? Click here

Structure and magnetic properties of melilite-type compounds RE2Be2GeO7 (RE = Pr, Nd, Gd-Yb) with Rare-Earth ions on Shastry-Sutherland lattice

82   0   0.0 ( 0 )
 Added by Zhaoming Tian
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rare-earth (RE) based frustrated magnets as typical systems of combining strong spin-orbit coupling, geometric frustration and anisotropic exchange interactions, can give rise to diverse exotic magnetic ground states such as quantum spin liquid (QSL). The discovery of new RE-based frustrated materials is crucial for exploring the exotic magnetic phases. Herein, we report the synthesis, structure and magnetic properties of a family of melilite-type RE2Be2GeO7 (RE = Pr, Nd, Gd-Yb) compounds crystallized in a tetragonal structure, where magnetic RE3+ ions lay out on Shastry-Sutherland lattice (SSL) within ab-plane and are well separated by nonmagnetic GeBe2O7 polyhedrons along c-axis. Temperature-dependent susceptibilities and isothermal magnetization M(H) measurements reveal that most RE2Be2GeO7 compounds except RE=Tb show no magnetic ordering down to 2 K despite the dominant antiferromagnetic (AFM) interactions, where Tb2Be2GeO7 undergoes AFM transition with Neel temperature TN~ 2.5 K and field-induced spin flop behaviors (T< TN). In addition, the calculated magnetic entropy change from the isothermal M(H) curves reveal a viable magnetocaloric effect (MCE) for RE2Be2GeO7 (RE =Gd, Dy) in liquid helium temperature regimes, Gd2Be2GeO7 shows maximum Sm up to 54.8 J K-1 Kg-1 at H= 7 T and Dy2Be2GeO7 has largest value Sm=16.1 J K-1 kg-1 at H= 2 T in this family. More excitingly, rich diversity of RE ions in this family enables an archetype for exploring exotic quantum magnetic phenomena with large variability of spin located on SSL lattice.



rate research

Read More

In the presence of a magnetic field frustrated spin systems may exhibit plateaus at fractional values of saturation magnetization. Such plateau states are stabilized by classical and quantum mechanisms including order-by-disorder, triplon crystallization, and various competing order effects. In the case of electrically conducting systems, free electrons represent an incisive probe for the plateau states. Here we study the electrical transport of Ising-type rare earth tetraborides $R$B$_4$ ($R=$Er, Tm), a metallic Shastry-Sutherland lattice showing magnetization plateaus. We find that the longitudinal and transverse resistivities reflect scattering with both the static and dynamic plateau structure. We model these results consistently with the expected strong uniaxial anisotropy in a quantitative level, providing a framework for the study of plateau states in metallic frustrated systems.
104 - Malik Ashtar 2020
Exploration of rare-earth (RE)-based Kagome lattice magnets with spin-orbital entangled jeff=1/2 moments will provide new platform for investigating the exotic magnetic phases. Here, we report a new family of RE3BWO9 (RE=Pr,Nd,Gd-Ho) boratotungstates with magnetic RE3+ ions arranged on Kagome lattice, and perform its structure and magnetic characterizations. This serial compounds crystallize in hexagonal coordinated structure with space group P63 (No.173), where magnetic RE3+ ions have distorted Kagome lattice connections within the ab plane and stacked in a AB-type fashion along c axis. The interlayer RE-RE separation is comparable with that of intralayer distance, forming 3-dimensional (3D) exchange coupled magnetic framework of RE3+ ions. The magnetic susceptibility data of RE3BWO9 (RE=Pr, Nd, Gd-Ho) reveal dominant antiferromagnetic interactions between magnetic RE3+ ions, but without visible magnetic ordering down to 2 K. The magnetization analyses for different RE3+ ions show diverse anisotropic behaviors, make RE3BWO9 as an appealing Kagome-lattice antiferromagnet to explore exotic magnetic phases.
145 - Rui Wang , Shaofeng Wang , 2011
The phonon and thermodynamic properties of rare-earth-aluminum intermetallics AlRE (RE=Y, Gd, Pr, Yb) with B2-type structure are investigated by performing density functional theory and density functional perturbation theory within the quasiharmonic approximation. The phonon spectra and phonon density of states, including the phonon partial density of states and total density of states, have been discussed. Our results demonstrate that the density of states is mostly composed of Al states at the high frequency. The temperature dependence of various quantities such as the thermal expansions, the heat capacities at constant volume and constant pressure, the isothermal bulk modulus, and the entropy are obtained. The electronic contribution to the specific heat is discussed, and the presented results show that the thermal electronic excitation affecting the thermal properties is inessential.
Magnetic circular dichroism (MCD) in the x-ray absorption spectroscopy (XAS) at the L2,3 edges for almost entire series of rare-earth (RE) elements in RE2Fe14B, is studied experimentally and theoretically. By a quantitative comparison of the complicated MCD spectral shapes, we find that (i) the 4f-5d intra-atomic exchange interaction not only induces the spin and orbital polarization of the 5d states, which is vital for the MCD spectra of the electric dipole transition from the 2p core states to the empty 5d conduction band, but also it accompanies a contraction of the radial part of the 5d wave function depending on its spin and orbital state, which results in the enhancement of the 2p-5d dipole matrix element, (ii) there are cases where the spin polarization of the 5d states due to the hybridization with the spin polarized 3d states of surrounding irons plays important roles, and (iii) the electric quadrupole transition from the 2p core states to the magnetic vale! nce 4f states is appreciable at the pre-edge region of the dipole spectrum. Especially, our results evidence that it is important to include the enhancement effect of the dipole matrix element in the correct interpretation of the MCD spectra at the RE L2,3 edges.
The layered perovskite compounds are interesting due to their intriguing physical properties. In this article we report the structural, magnetic and dielectric properties of LnBaCuFeO5 (Ln=Nd, Eu, Gd, Ho and Yb). The structural parameters decrease from Nd to Yb due to the decrease in the ionic radii of the rare earth ions. An antiferromagnetic transition is observed for EuBaCuFeO5 near 120 K along with the glassy dynamics of the electric dipoles below 100 K. The magnetic transition is absent in other compounds, which may be due to the dominance of the magnetic moment of the rare earth ions. The dielectric constant does not show any anomaly, except in the case of HoBaCuFeO5 where it shows a weak frequency dependence around 54 K. These compounds show a significant enhancement of dielectric constant at high temperatures which have been attributed to Maxwell-Wagner effect. However, no significant magneto-dielectric coupling has been observed in these layered perovskites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا