No Arabic abstract
This paper presents a novel training method, Conditional Masked Language Modeling (CMLM), to effectively learn sentence representations on large scale unlabeled corpora. CMLM integrates sentence representation learning into MLM training by conditioning on the encoded vectors of adjacent sentences. Our English CMLM model achieves state-of-the-art performance on SentEval, even outperforming models learned using supervised signals. As a fully unsupervised learning method, CMLM can be conveniently extended to a broad range of languages and domains. We find that a multilingual CMLM model co-trained with bitext retrieval (BR) and natural language inference (NLI) tasks outperforms the previous state-of-the-art multilingual models by a large margin, e.g. 10% improvement upon baseline models on cross-lingual semantic search. We explore the same language bias of the learned representations, and propose a simple, post-training and model agnostic approach to remove the language identifying information from the representation while still retaining sentence semantics.
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation in a fully self-supervised manner. Recent pre-training methods in NLP focus on learning either bottom or top-level language representations: contextualized word representations derived from language model objectives at one extreme and a whole sequence representation learned by order classification of two given textual segments at the other. However, these models are not directly encouraged to capture representations of intermediate-size structures that exist in natural languages such as sentences and the relationships among them. To that end, we propose a new approach to encourage learning of a contextualized sentence-level representation by shuffling the sequence of input sentences and training a hierarchical transformer model to reconstruct the original ordering. Through experiments on downstream tasks such as GLUE, SQuAD, and DiscoEval, we show that this feature of our model improves the performance of the original BERT by large margins.
Pretrained Masked Language Models (MLMs) have revolutionised NLP in recent years. However, previous work has indicated that off-the-shelf MLMs are not effective as universal lexical or sentence encoders without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective universal lexical and sentence encoders even without any additional data and without any supervision. We propose an extremely simple, fast and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds without any additional external knowledge. Mirror-BERT relies on fully identical or slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during identity fine-tuning. We report huge gains over off-the-shelf MLMs with Mirror-BERT in both lexical-level and sentence-level tasks, across different domains and different languages. Notably, in the standard sentence semantic similarity (STS) tasks, our self-supervised Mirror-BERT model even matches the performance of the task-tuned Sentence-BERT models from prior work. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple approach can yield effective universal lexical and sentence encoders.
The Transformer model is widely used in natural language processing for sentence representation. However, the previous Transformer-based models focus on function words that have limited meaning in most cases and could merely extract high-level semantic abstraction features. In this paper, two approaches are introduced to improve the performance of Transformers. We calculated the attention score by multiplying the part-of-speech weight vector with the correlation coefficient, which helps extract the words with more practical meaning. The weight vector is obtained by the input text sequence based on the importance of the part-of-speech. Furthermore, we fuse the features of each layer to make the sentence representation results more comprehensive and accurate. In experiments, we demonstrate the effectiveness of our model Transformer-F on three standard text classification datasets. Experimental results show that our proposed model significantly boosts the performance of text classification as compared to the baseline model. Specifically, we obtain a 5.28% relative improvement over the vanilla Transformer on the simple tasks.
Knowledge Bases (KBs) are easy to query, verifiable, and interpretable. They however scale with man-hours and high-quality data. Masked Language Models (MLMs), such as BERT, scale with computing power as well as unstructured raw text data. The knowledge contained within those models is however not directly interpretable. We propose to perform link prediction with MLMs to address both the KBs scalability issues and the MLMs interpretability issues. To do that we introduce MLMLM, Mean Likelihood Masked Language Model, an approach comparing the mean likelihood of generating the different entities to perform link prediction in a tractable manner. We obtain State of the Art (SotA) results on the WN18RR dataset and the best non-entity-embedding based results on the FB15k-237 dataset. We also obtain convincing results on link prediction on previously unseen entities, making MLMLM a suitable approach to introducing new entities to a KB.
It is a well-known approach for fringe groups and organizations to use euphemisms -- ordinary-sounding and innocent-looking words with a secret meaning -- to conceal what they are discussing. For instance, drug dealers often use pot for marijuana and avocado for heroin. From a social media content moderation perspective, though recent advances in NLP have enabled the automatic detection of such single-word euphemisms, no existing work is capable of automatically detecting multi-word euphemisms, such as blue dream (marijuana) and black tar (heroin). Our paper tackles the problem of euphemistic phrase detection without human effort for the first time, as far as we are aware. We first perform phrase mining on a raw text corpus (e.g., social media posts) to extract quality phrases. Then, we utilize word embedding similarities to select a set of euphemistic phrase candidates. Finally, we rank those candidates by a masked language model -- SpanBERT. Compared to strong baselines, we report 20-50% higher detection accuracies using our algorithm for detecting euphemistic phrases.