Do you want to publish a course? Click here

Storms and the Depletion of Ammonia in Jupiter: II. Explaining the Juno Observations

88   0   0.0 ( 0 )
 Added by Tristan Guillot
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of Jupiters deep atmosphere by the Juno spacecraft have revealed several puzzling facts: The concentration of ammonia is variable down to pressures of tens of bars, and is strongly dependent on latitude. While most latitudes exhibit a low abundance, the Equatorial Zone of Jupiter has an abundance of ammonia that is high and nearly uniform with depth. In parallel, the Equatorial Zone is peculiar for its absence of lightning, which is otherwise prevalent most everywhere else on the planet. We show that a model accounting for the presence of small-scale convection and water storms originating in Jupiters deep atmosphere accounts for the observations. Where strong thunderstorms are observed on the planet, we estimate that the formation of ammonia-rich hail (mushballs) and subsequent downdrafts can deplete efficiency the upper atmosphere of its ammonia and transport it efficiently to the deeper levels. In the Equatorial Zone, the absence of thunderstorms shows that this process is not occurring, implying that small-scale convection can maintain a near-homogeneity of this region. A simple model satisfying mass and energy balance accounts for the main features of Junos MWR observations and successfully reproduces the inverse correlation seen between ammonia abundance and the lightning rate as function of latitude. We predict that in regions where ammonia is depleted, water should also be depleted to great depths. The fact that condensates are not well mixed by convection until far deeper than their condensation level has consequences for our understanding of Jupiters deep interior and of giant-planet atmospheres in general.

rate research

Read More

Observations of Jupiters gravity field by Juno have revealed surprisingly small values for the high order gravitational moments, considering the abundances of heavy elements measured by Galileo 20 years ago. The derivation of recent equations of state for hydrogen and helium, much denser in the Mbar region, worsen the conflict between these two observations. In order to circumvent this puzzle, current Jupiter model studies either ignore the constraint from Galileo or invoke an ad hoc modification of the equations of state. In this paper, we derive Jupiter models which satisfy both Juno and Galileo constraints. We confirm that Jupiters structure must encompass at least four different regions: an outer convective envelope, a region of compositional, thus entropy change, an inner convective envelope and an extended diluted core enriched in heavy elements, and potentially a central compact core. We show that, in order to reproduce Juno and Galileo observations, one needs a significant entropy increase between the outer and inner envelopes and a smaller density than for an isentropic profile, associated with some external differential rotation. The best way to fulfill this latter condition is an inward decreasing abundance of heavy elements in this region. We examine in details the three physical mechanisms able to yield such a change of entropy and composition: a first order molecular-metallic hydrogen transition, immiscibility between hydrogen and helium or a region of layered convection. Given our present knowledge of hydrogen pressure ionization, combination of the two latter mechanisms seems to be the most favoured solution.
WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b by using three ground-based telescopes covering from optical (g, Rc, and Ic bands) to near-infrared (NIR; J, H, and Ks bands) wavelengths. We observe 5 primary transits, each of which in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solar abundance and thick cloud atmospheric models at 1.7$sigma$ discrepancy level. On the other hand, we find a marginal spectral rise in optical region compared to the NIR region at 2.9$sigma$ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0$sigma$. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.
The initial conditions of molecular clumps in which high-mass stars form are poorly understood. In particular, a more detailed study of the earliest evolutionary phases is needed. The APEX Telescope Large Area Survey of the whole inner Galactic disk at 870 micron, ATLASGAL, has been conducted to discover high-mass star-forming regions at different evolutionary phases. Using the Parkes telescope, we observed the NH3 (1,1) to (3,3) inversion transitions towards 354 ATLASGAL clumps in the fourth quadrant. For a subsample of 289 sources, the N2H+ (1-0) line was measured with the Mopra telescope. We measured a median NH3(1,1) line width of about 2 km/s and rotational temperatures from 12 to 28 K with a mean of 18 K. For a subsample with detected NH3 (2,2) hyperfine components, we found that the commonly used method to compute the (2,2) optical depth from the (1,1) optical depth and the (2,2) to (1,1) main beam brightness temperature ratio leads to an underestimation of the rotational temperature and column density. A larger median virial parameter of about 1 is determined using the broader N2H+ line width than is estimated from the NH3 line width of about 0.5 with a general trend of a decreasing virial parameter with increasing gas mass. We found a warmer surrounding of ATLASGAL clumps than the surrounding of low-mass cores and smaller velocity dispersions in low-mass than high-mass star-forming regions. The NH3 (1,1) inversion transition of 49% of the sources shows hyperfine structure anomalies. The intensity ratio of the outer hyperfine structure lines with a median of 1.27+/-0.03 and a standard deviation of 0.45 is significantly higher than 1, while the intensity ratios of the inner satellites with a median of 0.9+/-0.02 and standard deviation of 0.3 and the sum of the inner and outer hyperfine components with a median of 1.06+/-0.02 and standard deviation of 0.37 are closer to 1.
We present the discovery of a transiting hot Jupiter orbiting HIP 67522 ($T_{eff}sim5650$ K; $M_* sim 1.2 M_{odot}$) in the 10-20 Myr old Sco-Cen OB association. We identified the transits in the TESS data using our custom notch-filter planet search pipeline, and characterize the system with additional photometry from Spitzer, spectroscopy from SOAR/Goodman, SALT/HRS, LCOGT/NRES, and SMARTS/CHIRON, and speckle imaging from SOAR/HRCam. We model the photometry as a periodic Gaussian process with transits to account for stellar variability, and find an orbital period of 6.9596$^{+0.000016}_{-0.000015}$ days and radius of 10.02$^{+0.54}_{-0.53}$ R$_oplus$. We also identify a single transit of an additional candidate planet with radius 8.01$^{+0.75}_{-0.71}$ R$_oplus$ that has an orbital period of $gtrsim23$ days. The validated planet HIP 67522 b is currently the youngest transiting hot Jupiter discovered and is an ideal candidate for transmission spectroscopy and radial velocity follow-up studies, while also demonstrating that some young giant planets either form in situ at small orbital radii, or else migrate promptly from formation sites farther out in the disk.
We investigate the dust and gas distribution in the disk around HD 142527 based on ALMA observations of dust continuum, 13CO(3-2), and C18O(3-2) emission. The disk shows strong azimuthal asymmetry in the dust continuum emission, while gas emission is more symmetric. In this paper, we investigate how gas and dust are distributed in the dust-bright northern part of the disk and in the dust-faint southern part. We construct two axisymmetric disk models. One reproduces the radial profiles of the continuum and the velocity moments 0 and 1 of CO lines in the north and the other reproduces those in the south. We have found that the dust is concentrated in a narrow ring having ~50AU width (in FWHM; w_d=30AU in our parameter definition) located at ~170-200AU from the central star. The dust particles are strongly concentrated in the north. We have found that the dust surface density contrast between the north and south amounts to ~70. Compared to the dust, the gas distribution is more extended in the radial direction. We find that the gas component extends at least from ~100AU to ~250AU from the central star, and there should also be tenuous gas remaining inside and outside of these radii. The azimuthal asymmetry of gas distribution is much smaller than dust. The gas surface density differs only by a factor of ~3-10 between the north and south. Hence, gas-to-dust ratio strongly depends on the location of the disk: ~30 at the location of the peak of dust distribution in the south and ~3 at the location of the peak of dust distribution in the north. Despite large uncertainties, the overall gas-to-dust ratio is inferred to be ~10-30, indicating that the gas depletion may have already been under way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا