Do you want to publish a course? Click here

Optically-Heralded Entanglement of Superconducting Systems in Quantum Networks

112   0   0.0 ( 0 )
 Added by Stefan Krastanov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Networking superconducting quantum computers is a longstanding challenge in quantum science. The typical approach has been to cascade transducers: converting to optical frequencies at the transmitter and to microwave frequencies at the receiver. However, the small microwave-optical coupling and added noise have proven formidable obstacles. Instead, we propose optical networking via heralding end-to-end entanglement with one detected photon and teleportation. In contrast to cascaded direct transduction, our scheme absorbs the low optical-microwave coupling efficiency into the heralding step, thus breaking the rate-fidelity trade-off. Moreover, this technique unifies and simplifies entanglement generation between superconducting devices and other physical modalities in quantum networks.

rate research

Read More

Quantum entanglement is at the heart of quantum information sciences and quantum technologies. In the optical domain, the most common type of quantum entanglement is polarization entanglement, which is usually created in a postselection manner involving destructive photon detection and thus hindering further applications which require readily available entanglement resources. In this work, we propose a scheme to prepare multipartite entangled states of polarized photons in a heralded manner, i.e., without postselection. We exploit the quantum scissors technique to truncate a given continuous-variable entanglement into the target entangled states which are of hybrid discrete-continuous or solely discrete types. We consider two implementations of the quantum scissors: one modified from the original quantum scissors [Pegg et al., Phys. Rev. Lett. 81, 1604 (1998)] using single photons and linear optics and the other designed here using a type-II two-mode squeezer. We clarify the pros and cons of these two implementations as well as discussing practical aspects of the entanglement preparation. Our work illustrates an interface between various types of optical entanglement and the proposed quantum scissors techniques could serve as alternative methods for heralded generation of polarization entanglement.
We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy between the exact ground state and the set of fermionic gaussian states, exhibit a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is displayed by the bipartite entanglement between the set of all single particle states $k$ of positive quasimomenta and their time reversed partners $bar{k}$. In contrast, the entanglement associated with the reduced density matrix of four single particle modes $k,bar{k}$, $k,bar{k}$, which can be measured through a properly defined fermionic concurrence, exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states $k,k$ close to the fermi level and becoming small in the strong coupling regime. In the latter such reduced state exhibits, instead, a finite mutual information and quantum discord. And while the first measures can be correctly estimated with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least a particle number projected BCS treatment for its description. Formal properties of all previous entanglement measures are as well discussed.
Incoherent scattering of photons off two remote atoms with a Lambda-level structure is used as a basic Young-type interferometer to herald long-lived entanglement of an arbitrary degree. The degree of entanglement, as measured by the concurrence, is found to be tunable by two easily accessible experimental parameters. Fixing one of them to certain values unveils an analog to the Malus law. An estimate of the variation in the degree of entanglement due to uncertainties in an experimental realization is given.
The heralded generation of entangled states is a long-standing goal in quantum information processing, because it is indispensable for a number of quantum protocols. Polarization entangled photon pairs are usually generated through spontaneous parametric down-conversion, but the emission is probabilistic. Their applications are generally accompanied by post-selection and destructive photon detection. Here, we report a source of entanglement generated in an event-ready manner by conditioned detection of auxiliary photons. This scheme benefits from the stable and robust properties of spontaneous parametric down-conversion and requires only modest experimental efforts. It is flexible and allows the preparation efficiency to be significantly improved by using beamsplitters with different transmission ratios. We have achieved a fidelity better than 87% and a state preparation efficiency of 45% for the source. This could offer promise in essential photonics-based quantum information tasks, and particularly in enabling optical quantum computing by reducing dramatically the computational overhead.
We report the experimental realization of heralded distribution of single-photon path entanglement at telecommunication wavelengths in a repeater-like architecture. The entanglement is established upon detection of a single photon, originating from one of two spontaneous parametric down conversion photon pair sources, after erasing the photons which-path information. In order to certify the entanglement, we use an entanglement witness which does not rely on post-selection. We herald entanglement between two locations, separated by a total distance of 2 km of optical fiber, at a rate of 1.6 kHz. This work paves the way towards high-rate and practical quantum repeater architectures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا