Do you want to publish a course? Click here

Heralded distribution of single-photon path entanglement

88   0   0.0 ( 0 )
 Added by Patrik Caspar
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the experimental realization of heralded distribution of single-photon path entanglement at telecommunication wavelengths in a repeater-like architecture. The entanglement is established upon detection of a single photon, originating from one of two spontaneous parametric down conversion photon pair sources, after erasing the photons which-path information. In order to certify the entanglement, we use an entanglement witness which does not rely on post-selection. We herald entanglement between two locations, separated by a total distance of 2 km of optical fiber, at a rate of 1.6 kHz. This work paves the way towards high-rate and practical quantum repeater architectures.



rate research

Read More

Quantum entanglement is of central importance to quantum computing, quantum metrology, quantum information as well as the nature of quantum physics. Quantum theory does not prevent entanglement from being created and observed in macroscopic physical systems, in reality however, the accessible scale of entanglement is still very limited due to decoherence effects. Recently, entanglement has been observed among atoms from thousands to millions level in extremely low-temperature and well-isolated systems. Here, we create multipartite entanglement of billions of motional atoms in a quantum memory at room temperature, and certify the genuine entanglement via $M$-separability witness associated with photon statistics. The information contained in a single photon is found strongly correlated with the excitation shared by the motional atoms, which intrinsically address the large system and therefore stimulate the multipartite entanglement. Remarkably, our heralded and quantum memory built-in entanglement generation allows us to directly observe the dynamic evolution of entanglement depth and further to reveal the effects of decoherence. Our results verify the existence of genuine multipartite entanglement among billions of motional atoms at ambient condition, significantly extending the boundary of the accessible scale of entanglement. Besides probing the quantum-to-classical transition in an entirely new realm, the developed abilities of manipulating such a large-scale entanglement may enhance a wide spectrum of applications for emerging quantum technologies.
How can a multipartite single-photon path-entangled state be certified efficiently by means of local measurements? We address this question by constructing an entanglement witness based on local photon detections preceded by displacement operations to reveal genuine multipartite entanglement. Our witness is defined as a sum of two observables that can be measured locally and assessed with two measurement settings for any number of parties $N$. For any bipartition, the maximum mean value of the witness observable over biseparable states is bounded from the maximal eigenvalue of an $Ntimes N$ matrix, which can be computed efficiently. We demonstrate the applicability of our scheme by experimentally testing the witness for heralded 4- and 8-partite single-photon path-entangled states. Our implementation shows the scalability of our witness and opens the door for distributing photonic multipartite entanglement in quantum networks at high rates.
The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4% increase in the heralded single photon output without an increase in unwanted multi-pair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two photon interference, required at the core of optical quantum computing and quantum communication protocols.
Single-photon sources (SPSs) are mainly characterized by the minimum value of their second-order coherence function, viz. their $g^{(2)}$ function. A precise measurement of $g^{(2)}$ may, however, require high time-resolution devices, in whose absence, only time-averaged measurements are accessible. These time-averaged measures, standing alone, do not carry sufficient information for proper characterization of SPSs. Here, we develop a theory, corroborated by an experiment, that allows us to scrutinize the coherence properties of heralded SPSs that rely on continuous-wave parametric down-conversion. Our proposed measures and analysis enable proper standardization of such SPSs.
Single photon source represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper we investigate the performance of a multiplexed system based on asymmetric configuration of multiple heralded single photon sources. {To compare the effectiveness of different designs we introduce a single-photon source performance index that is based on the value of single photon probability required to achieve a guaranteed signal to noise ratio.} The performance and scalability comparison with both currently existing multiple-source architectures and faint laser configurations reveals an advantage the proposed scheme offers in realistic scenarios. This analysis also provides insights on the potential of using such architectures for integrated implementation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا