Do you want to publish a course? Click here

Double-winding Wilson loops in the $SU(N)$ Yang-Mills theory

62   0   0.0 ( 0 )
 Added by Ryutaro Matsudo
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We consider double-winding, triple-winding and multiple-winding Wilson loops in the $SU(N)$ Yang-Mills gauge theory. We examine how the area law falloff of the vacuum expectation value of a multiple-winding Wilson loop depends on the number of color $N$. In sharp contrast to the difference-of-areas law recently found for a double-winding $SU(2)$ Wilson loop average, we show irrespective of the spacetime dimensionality that a double-winding $SU(3)$ Wilson loop follows a novel area law which is neither difference-of-areas nor sum-of-areas law for the area law falloff and that the difference-of-areas law is excluded and the sum-of-areas law is allowed for $SU(N)$ ($N ge 4$), provided that the string tension obeys the Casimir scaling for the higher representations. Moreover, we extend these results to arbitrary multi-winding Wilson loops. Finally, we argue that the area law follows a novel law, which is neither sum-of-areas nor difference-of-areas law when $Nge 3$. In fact, such a behavior is exactly derived in the $SU(N)$ Yang-Mills theory in the two-dimensional spacetime.



rate research

Read More

We examine how the average of double-winding Wilson loops depends on the number of color $N$ in the $SU(N)$ Yang-Mills theory. In the case where the two loops $C_1$ and $C_2$ are identical, we derive the exact operator relation which relates the double-winding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on $N$. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for $N=2$ is excluded for $N geq 3$, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law $(N - 3)A_1/(N-1)+A_2$ with $A_1$ and $A_2 (A_1<A_2)$ being the minimal areas spanned respectively by the loops $C_1$ and $C_2$, which is neither sum-of-areas ($A_1+A_2$) nor difference-of-areas ($A_2 - A_1$) law when ($Ngeq3$). Indeed, this behavior can be confirmed in the two-dimensional $SU(N)$ Yang-Mills theory exactly.
The N=2* Super-Yang-Mills theory (SYM*) undergoes an infinite sequence of large-N quantum phase transitions. We compute expectation values of Wilson loops in k-symmetric and antisymmetric representations of the SU(N) gauge group in this theory and show that the same phenomenon that causes the phase transitions at finite coupling leads to a non-analytic dependence of Wilson loops on k/N when the coupling is strictly infinite, thus making the higher-representation Wilson loops ideal holographic probes of the non-trivial phase structure of SYM*.
We construct the D3-brane solution in the holographic dual of the N = 2* theory that describes Wilson lines in symmetric representations of the gauge group. The results perfectly agree with the direct field-theory predictions based on localization.
132 - D.G. Pak , Takuya Tsukioka 2020
Color confinement is the most puzzling phenomenon in the theory of strong interaction based on a quantum SU(3) Yang-Mills theory. The origin of color confinement supposed to be intimately related to non-perturbative features of the non-Abelian gauge theory, and touches very foundations of the theory. We revise basic concepts underlying QCD concentrating mainly on concepts of gluons and quarks and color structure of quantum states. Our main idea is that a Weyl symmetry is the only color symmetry which determines all color attributes of quantum states and physical observables. We construct an ansatz for classical Weyl symmetric dynamical solutions in SU(3) Yang-Mills theory which describe one particle color singlet quantum states for gluons and quarks. Abelian Weyl symmetric solutions provide microscopic structure of a color invariant vacuum and vacuum gluon condensates. This resolves a problem of existence of a gauge invariant and stable vacuum in QCD. Generalization of our consideration to SU(N) (N=4,5) Yang-Mills theory implies that the color confinement phase is possible only in SU(3) Yang-Mills theory.
158 - Alexander D. Popov 2008
It is well known that there are no static non-Abelian monopole solutions in pure Yang-Mills theory on Minkowski space R^{3,1}. We show that such solutions exist in SU(N) gauge theory on the spaces R^2times S^2 and R^1times S^1times S^2 with Minkowski signature (-+++). In the temporal gauge they are solutions of pure Yang-Mills theory on T^1times S^2, where T^1 is R^1 or S^1. Namely, imposing SO(3)-invariance and some reality conditions, we consistently reduce the Yang-Mills model on the above spaces to a non-Abelian analog of the phi^4 kink model whose static solutions give SU(N) monopole (-antimonopole) configurations on the space R^{1,1}times S^2 via the above-mentioned correspondence. These solutions can also be considered as instanton configurations of Yang-Mills theory in 2+1 dimensions. The kink model on R^1times S^1 admits also periodic sphaleron-type solutions describing chains of n kink-antikink pairs spaced around the circle S^1 with arbitrary n>0. They correspond to chains of n static monopole-antimonopole pairs on the space R^1times S^1times S^2 which can also be interpreted as instanton configurations in 2+1 dimensional pure Yang-Mills theory at finite temperature (thermal time circle). We also describe similar solutions in Euclidean SU(N) gauge theory on S^1times S^3 interpreted as chains of n instanton-antiinstanton pairs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا