Do you want to publish a course? Click here

$K3$ curves with index $k>1$

58   0   0.0 ( 0 )
 Added by Thomas Dedieu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $mathcal{KC}_g ^k$ be the moduli stack of pairs $(S,C)$ with $S$ a $K3$ surface and $Csubset S$ a genus $g$ curve with divisibility $k$ in $mathrm{Pic}(S)$. In this article we study the forgetful map $c_g^k:(S,C) mapsto C$ from $mathcal{KC}_g ^k$ to $mathcal{M}_g$ for $k>1$. First we compute by geometric means the dimension of its general fibre. This turns out to be interesting only when $S$ is a complete intersection or a section of a Mukai variety. In the former case we find the existence of interesting Fano varieties extending $C$ in its canonical embedding. In the latter case this is related to delicate modular properties of the Mukai varieties. Next we investigate whether $c_g^k$ dominates the locus in $mathcal{M}_g$ of $k$-spin curves with the appropriate number of independent sections. We are able to do this only when $S$ is a complete intersection, and obtain in these cases some classification results for spin curves.



rate research

Read More

We show that the K-moduli spaces of log Fano pairs $(mathbb{P}^1timesmathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $mathbb{P}^3$. This, together with recent results by Laza-OGrady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$-curves on $mathbb{P}^1timesmathbb{P}^1$ and the Baily-Borel compactification of moduli of quartic hyperelliptic K3 surfaces.
368 - D. Maulik , R. Pandharipande , 2010
We study the virtual geometry of the moduli spaces of curves and sheaves on K3 surfaces in primitive classes. Equivalences relating the reduced Gromov-Witten invariants of K3 surfaces to characteristic numbers of stable pairs moduli spaces are proven. As a consequence, we prove the Katz-Klemm-Vafa conjecture evaluating $lambda_g$ integrals (in all genera) in terms of explicit modular forms. Indeed, all K3 invariants in primitive classes are shown to be governed by modular forms. The method of proof is by degeneration to elliptically fibered rational surfaces. New formulas relating reduced virtual classes on K3 surfaces to standard virtual classes after degeneration are needed for both maps and sheaves. We also prove a Gromov-Witten/Pairs correspondence for toric 3-folds. Our approach uses a result of Kiem and Li to produce reduced classes. In Appendix A, we answer a number of questions about the relationship between the Kiem-Li approach, traditional virtual cycles, and symmetric obstruction theories. The interplay between the boundary geometry of the moduli spaces of curves, K3 surfaces, and modular forms is explored in Appendix B by A. Pixton.
The supersingular K3 surface X in characteristic 2 with Artin invariant 1 admits several genus 1 fibrations (elliptic and quasi-elliptic). We use a bijection between fibrations and definite even lattices of rank 20 and discriminant 4 to classify the fibrations, and exhibit isomorphisms between the resulting models of X. We also study a configuration of (-2)-curves on X related to the incidence graph of points and lines of IP^2(IF_4).
107 - Daniel Bragg , Max Lieblich 2019
We describe a method to show that certain elliptic surfaces do not admit purely inseparable multisections (equivalently, that genus one curves over function fields admit no points over the perfect closure of the base field) and use it to show that any non-Jacobian elliptic structure on a very general supersingular K3 surface has no purely inseparable multisections. We also describe specific examples of such fibrations without purely inseparable multisections. Finally, we discuss the consequences for the claimed proof of the Artin conjecture on unirationality of supersingular K3 surfaces.
297 - Evgeny Shinder , Ziyu Zhang 2019
We construct nontrivial L-equivalence between curves of genus one and degree five, and between elliptic surfaces of multisection index five. These results give the first examples of L-equivalence for curves (necessarily over non-algebraically closed fields) and provide a new bit of evidence for the conjectural relationship between L-equivalence and derived equivalence. The proof of the L-equivalence for curves is based on Kuznetsovs Homological Projective Duality for Gr(2,5), and L-equivalence is extended from genus one curves to elliptic surfaces using the Ogg--Shafarevich theory of twisting for elliptic surfaces. Finally, we apply our results to K3 surfaces and investigate when the two elliptic L-equivalent K3 surfaces we construct are isomorphic, using Neron--Severi lattices, moduli spaces of sheaves and derived equivalence. The most interesting case is that of elliptic K3 surfaces of polarization degree ten and multisection index five, where the resulting L-equivalence is new.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا