Do you want to publish a course? Click here

Genus 1 fibrations on the supersingular K3 surface in characteristic 2 with Artin invariant 1

117   0   0.0 ( 0 )
 Added by Matthias Sch\\\"utt
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The supersingular K3 surface X in characteristic 2 with Artin invariant 1 admits several genus 1 fibrations (elliptic and quasi-elliptic). We use a bijection between fibrations and definite even lattices of rank 20 and discriminant 4 to classify the fibrations, and exhibit isomorphisms between the resulting models of X. We also study a configuration of (-2)-curves on X related to the incidence graph of points and lines of IP^2(IF_4).



rate research

Read More

107 - Daniel Bragg , Max Lieblich 2019
We describe a method to show that certain elliptic surfaces do not admit purely inseparable multisections (equivalently, that genus one curves over function fields admit no points over the perfect closure of the base field) and use it to show that any non-Jacobian elliptic structure on a very general supersingular K3 surface has no purely inseparable multisections. We also describe specific examples of such fibrations without purely inseparable multisections. Finally, we discuss the consequences for the claimed proof of the Artin conjecture on unirationality of supersingular K3 surfaces.
73 - Andreas Pieper 2021
L. Moret-Bailly constructed families $mathfrak{C}rightarrow mathbb{P}^1$ of genus 2 curves with supersingular jacobian. In this paper we first classify the reducible fibers of a Moret-Bailly family using linear algebra over a quaternion algebra. The main result is an algorithm that exploits properties of two reducible fibers to compute a hyperelliptic model for any irreducible fiber of a Moret-Bailly family.
135 - Daniel Bragg , Max Lieblich 2018
We develop a theory of twistor spaces for supersingular K3 surfaces, extending the analogy between supersingular K3 surfaces and complex analytic K3 surfaces. Our twistor spaces are obtained as relative moduli spaces of twisted sheaves on universal gerbes associated to the Brauer groups of supersingular K3 surfaces. In rank 0, this is a geometric incarnation of the Artin-Tate isomorphism. Twistor spaces give rise to curves in moduli spaces of twisted supersingular K3 surfaces, analogous to the analytic moduli space of marked K3 surfaces. We describe a theory of crystals for twisted supersingular K3 surfaces and a twisted period morphism from the moduli space of twisted supersingular K3 surfaces to this space of crystals. As applications of this theory, we give a new proof of the Ogus-Torelli theorem modeled on Verbitskys proof in the complex analytic setting and a new proof of the result of Rudakov-Shafarevich that supersingular K3 surfaces have potentially good reduction. These proofs work in characteristic 3, filling in the last remaining gaps in the theory. As a further application, we show that each component of the supersingular locus in each moduli space of polarized K3 surfaces is unirational.
Let $mathcal{KC}_g ^k$ be the moduli stack of pairs $(S,C)$ with $S$ a $K3$ surface and $Csubset S$ a genus $g$ curve with divisibility $k$ in $mathrm{Pic}(S)$. In this article we study the forgetful map $c_g^k:(S,C) mapsto C$ from $mathcal{KC}_g ^k$ to $mathcal{M}_g$ for $k>1$. First we compute by geometric means the dimension of its general fibre. This turns out to be interesting only when $S$ is a complete intersection or a section of a Mukai variety. In the former case we find the existence of interesting Fano varieties extending $C$ in its canonical embedding. In the latter case this is related to delicate modular properties of the Mukai varieties. Next we investigate whether $c_g^k$ dominates the locus in $mathcal{M}_g$ of $k$-spin curves with the appropriate number of independent sections. We are able to do this only when $S$ is a complete intersection, and obtain in these cases some classification results for spin curves.
152 - Daniel Bragg 2018
We study the derived categories of twisted supersingular K3 surfaces. We prove a derived crystalline Torelli theorem for twisted supersingular K3 surfaces, characterizing Fourier-Mukai equivalences in terms of isomorphisms between their associated K3 crystals. This is a positive characteristic analog of the Hodge-theoretic derived Torelli theorem of Orlov, and its extension to twisted K3 surfaces by Huybrechts and Stellari. We give applications to various questions concerning Fourier-Mukai partners, extending results of Cu{a}ldu{a}raru and Huybrechts and Stellari. We also give an exact formula for the number of twisted Fourier-Mukai partners of a twisted supersingular K3 surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا