Do you want to publish a course? Click here

Affine and formal abelian group schemes on $p$-polar rings

98   0   0.0 ( 0 )
 Added by Tilman Bauer
 Publication date 2020
  fields
and research's language is English
 Authors Tilman Bauer




Ask ChatGPT about the research

We show that the functor of $p$-typical co-Witt vectors on commutative algebras over a perfect field $k$ of characteristic $p$ is defined on, and in fact only depends on, a weaker structure than that of a $k$-algebra. We call this structure a $p$-polar $k$-algebra. By extension, the functors of points for any $p$-adic affine commutative group scheme and for any formal group are defined on, and only depend on, $p$-polar structures. In terms of abelian Hopf algebras, we show that a cofree cocommutative Hopf algebra can be defined on any $p$-polar $k$-algebra $P$, and it agrees with the cofree commutative Hopf algebra on a commutative $k$-algebra $A$ if $P$ is the $p$-polar algebra underlying $A$; a dual result holds for free commutative Hopf algebras on finite $k$-coalgebras.



rate research

Read More

123 - Tilman Bauer 2021
As an extension of previous ungraded work, we define a graded $p$-polar ring to be an analog of a graded commutative ring where multiplication is only allowed on $p$-tuples (instead of pairs) of elements of equal degree. We show that the free affine $p$-adic group scheme functor, as well as the free formal group functor, defined on $k$-algebras for a perfect field $k$ of characteristic $p$, factors through $p$-polar $k$-algebras. It follows that the same is true for any affine $p$-adic or formal group functor, in particular for the functor of $p$-typical Witt vectors. As an application, we show that the latter is free on the $p$-polar affine line.
Affine ind-varieties are infinite dimensional generalizations of algebraic varieties which appear naturally in many different contexts, in particular in the study of automorphism groups of affine spaces. In this article we introduce and develop the basic algebraic theory of topologically integrable derivations of complete topological rings. We establish a bijective algebro-geometric correspondence between additive group actions on affine ind-varieties and topologically integrable derivations of their coordinate pro-rings which extends the classical fruitful correspondence between additive group actions on affine varieties and locally nilpotent derivations of their coordinate rings.
In this paper we study tensor products of affine abelian group schemes over a perfect field $k.$ We first prove that the tensor product $G_1 otimes G_2$ of two affine abelian group schemes $G_1,G_2$ over a perfect field $k$ exists. We then describe the multiplicative and unipotent part of the group scheme $G_1 otimes G_2$. The multiplicative part is described in terms of Galois modules over the absolute Galois group of $k.$ We describe the unipotent part of $G_1 otimes G_2$ explicitly, using Dieudonne theory in positive characteristic. We relate these constructions to previously studied tensor products of formal group schemes.
404 - Paul G. Goerss 2008
The central aim of this monograph is to provide decomposition results for quasi-coherent sheaves on the moduli stack of one-dimensional formal groups. These results will be based on the geometry of the stack itself, particularly the height filtration and an analysis of the formal neighborhoods of the geometric points. The main theorems are algebraic chromatic convergence results and fracture square decompositions. There is a major technical hurdle in this story, as the moduli stack of formal groups does not have the finitness properties required of an algebraic stack as usually defined. This is not a conceptual problem, but in order to be clear on this point and to write down a self-contained narrative, I have included a great deal of discussion of the geometry of the stack itself, giving various equivalent descriptions.
208 - Adrian Vasiu , Thomas Zink 2009
Let $p$ be a prime. Let $V$ be a discrete valuation ring of mixed characteristic $(0,p)$ and index of ramification $e$. Let $f: G rightarrow H$ be a homomorphism of finite flat commutative group schemes of $p$ power order over $V$ whose generic fiber is an isomorphism. We provide a new proof of a result of Bondarko and Liu that bounds the kernel and the cokernel of the special fiber of $f$ in terms of $e$. For $e < p-1$ this reproves a result of Raynaud. Our bounds are sharper that the ones of Liu, are almost as sharp as the ones of Bondarko, and involve a very simple and short method. As an application we obtain a new proof of an extension theorem for homomorphisms of truncated Barsotti--Tate groups which strengthens Tates extension theorem for homomorphisms of $p$-divisible groups.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا