Do you want to publish a course? Click here

Topologically integrable derivations and additive group actions on affine ind-schemes

140   0   0.0 ( 0 )
 Added by Adrien Dubouloz
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Affine ind-varieties are infinite dimensional generalizations of algebraic varieties which appear naturally in many different contexts, in particular in the study of automorphism groups of affine spaces. In this article we introduce and develop the basic algebraic theory of topologically integrable derivations of complete topological rings. We establish a bijective algebro-geometric correspondence between additive group actions on affine ind-varieties and topologically integrable derivations of their coordinate pro-rings which extends the classical fruitful correspondence between additive group actions on affine varieties and locally nilpotent derivations of their coordinate rings.



rate research

Read More

97 - Tilman Bauer 2020
We show that the functor of $p$-typical co-Witt vectors on commutative algebras over a perfect field $k$ of characteristic $p$ is defined on, and in fact only depends on, a weaker structure than that of a $k$-algebra. We call this structure a $p$-polar $k$-algebra. By extension, the functors of points for any $p$-adic affine commutative group scheme and for any formal group are defined on, and only depend on, $p$-polar structures. In terms of abelian Hopf algebras, we show that a cofree cocommutative Hopf algebra can be defined on any $p$-polar $k$-algebra $P$, and it agrees with the cofree commutative Hopf algebra on a commutative $k$-algebra $A$ if $P$ is the $p$-polar algebra underlying $A$; a dual result holds for free commutative Hopf algebras on finite $k$-coalgebras.
We consider an arbitrary representation of the additive group over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.
Let K be a field of characteristic zero. We prove that images of a linear K-derivation and a linear K-E-derivation of the ring K[x 1 ,x 2 ,x 3 ] of polynomial in three variables over K are Mathieu-Zhao subspaces, which affirms the LFED conjecture for linear K-derivations and linear K-E-derivations of K[x 1 ,x 2 ,x 3 ].
Using results obtained from the study of homogeneous ideals sharing the same initial ideal with respect to some term order, we prove the singularity of the point corresponding to a segment ideal with respect to the revlex term order in the Hilbert scheme of points in $mathbb{P}^n$. In this context, we look inside properties of several types of segment ideals that we define and compare. This study led us to focus our attention also to connections between the shape of generators of Borel ideals and the related Hilbert polynomial, providing an algorithm for computing all saturated Borel ideals with the given Hilbert polynomial.
Let K be a finite field and let X* be an affine algebraic toric set parameterized by monomials. We give an algebraic method, using Groebner bases, to compute the length and the dimension of C_X*(d), the parameterized affine code of degree d on the set X*. If Y is the projective closure of X*, it is shown that C_X^*(d) has the same basic parameters that C_Y(d), the parameterized projective code on the set Y. If X* is an affine torus, we compute the basic parameters of C_X*(d). We show how to compute the vanishing ideals of X* and Y.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا